Evolutionary Parameters in Sequence Families

Cold Adaptation of Enzymes
  • Said Hassan Ahmed
  • Tor Flå
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5780)

Abstract

In an attempt to incorporate environmental effects like cold-adaptation into models of sequence evolution on a phylogenetic tree, we present a viable way of representing descriptive statistics of sequence observables under reversible Markov models of sequence evolution. Local variation in amino acid distribution along and across the sequence family can be connected to enzymatic adaptation to different temperatures. Here, we estimate a few amino acid properties and how the variations of these properties both with respect excess mean values (EMVs) and covariance classify the protein family into clusters. Application of a multiscale and multivariate method to an aligned family of distinct trypsin and elastase sequences shows drift of centroid mean sequences of cold adapted enzymes compared to their warm-active counterparts.

Keywords

Discrete Wavelet Trans Sequence Position Evolutionary Parameter Cold Adaptation Sequence Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Goldman, N., Yang, Z.: A codon based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11(5), 725–736 (1994)PubMedGoogle Scholar
  2. 2.
    Felsenstein, J.: Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)CrossRefPubMedGoogle Scholar
  3. 3.
    Pollock, D., Taylor, W., Goldman, N.: Coevolving protein residues: Maximum likelihood identification and relationship to structure. J. Mol. Biol. 287, 187–198 (1999)CrossRefPubMedGoogle Scholar
  4. 4.
    Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of muatation data matrices from protein sequences. Comp. Appl. Biosci. 8, 275–282 (1992)PubMedGoogle Scholar
  5. 5.
    Kishino, H., Miyata, T., Hasegawa, M.: Maximum likelihood inference of protein phylogenies and the origin of chloroplasts. J. Mol. Evol. 31, 151–160 (1990)CrossRefGoogle Scholar
  6. 6.
    Hasegawa, M., Fujiwara, M.: Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor joining methods for estimating protein phylogeny. Mol. Phylog. and Evol. 2, 1–5 (1993)CrossRefGoogle Scholar
  7. 7.
    Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis, 5th edn. Prentice Hall, Upper Saddler River (2002)Google Scholar
  8. 8.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefGoogle Scholar
  9. 9.
    Suzuki, T., Srivastava, A., Kurokawa, T.: cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus. Comp. Biochem. and Physiol. Part B 131, 63–70 (2001)CrossRefGoogle Scholar
  10. 10.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press (1997)Google Scholar
  11. 11.
    Donoho, D., Johnstone, I.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)CrossRefGoogle Scholar
  12. 12.
    Koshi, J.M., Mindell, D.P., Goldstein, R.A.: Beyond mutation matrices: physicalchemistry based evolutionary models. In: Miyano, S., Takagi, T. (eds.) Genome informatics, pp. 80–89. Universal Academy Press, Tokyo (1997)Google Scholar
  13. 13.
    Casari, G., Sander, C., Valencia, A.: A method to predict functional residues in proteins. Nat. Struc. Biol. 2(2), 171–178 (1995)CrossRefGoogle Scholar
  14. 14.
    Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  15. 15.
    Whelan, S., Goldman, N.: A general empirical model of protein evolution derived from multiple protein famililies using a maximum-likelihood approach. Mol. Biol. and Evol. 18, 691–699 (2001)CrossRefGoogle Scholar
  16. 16.
    Goldman, N., Whelan, S.: A novel use of equillibrium frequencies in models of sequence evolution. Mol. Evol. 11, 1821–1831 (2002)CrossRefGoogle Scholar
  17. 17.
    Ahmed, S.H., Flå, T.: Estimation of evolutionary average hydrophobicity profile from a family of protein sequences. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 158–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Feller, G., Gerday, C.: Psychrophilic enzymes: molecular basis of cold-adaptation. Cell Mol. Life Sci. 53, 830–841 (1997)CrossRefPubMedGoogle Scholar
  19. 19.
    Georlette, D., Blaise, V., Collins, T., D’Amico, S., Gratia, E., Hoyoux, A., Marx, J.C., Sonan, G., Feller, G., Gerday, C.: Some like it cold: biocatalysis at low temperatures. FEMS icrobiol. Rev. 28, 25–52 (2004)CrossRefGoogle Scholar
  20. 20.
    Schrøder, H.-K., Willassen, N.P., Smalås, A.O.: Residue determinants and sequence analysis of cold-adapted trypsins. Extremophiles (2), 5–219 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Said Hassan Ahmed
    • 1
  • Tor Flå
    • 1
  1. 1.Dept of Mathematics and StatisticsUniversity of TromsøTromsøNorway

Personalised recommendations