Skip to main content

Part of the book series: Algorithms and Combinatorics ((AC,volume 23))

Abstract

The First Moment Principle states that a random variable X is at most E(X) with positive probability. Often we require that X is near E(X) with very high probability. When this is the case, we say that X is concentrated. In this book, we will see a number of tools for proving that a random variable is concentrated, including Talagrand’s Inequality and Azuma’s Inequality. In this chapter, we begin with the simplest such tool, the Chernoff Bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Molloy, M., Reed, B. (2002). The Chernoff Bound. In: Graph Colouring and the Probabilistic Method. Algorithms and Combinatorics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04016-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04016-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04015-3

  • Online ISBN: 978-3-642-04016-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics