Skip to main content

Unsupervised and Supervised Learning of Graph Domains

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 247))

Abstract

In this chapter, we will describe a method for extracting an underlying graph structure from an unstructured text document. The resulting graph structure is a symmetrical un-directed graph. An unsupervised learning approach is applied to cluster a given text corpus into groups of similar structured graphs. Moreover, if labels are given to some of the documents in the text corpus, a supervised learning approach can be applied to learn the underlying input-output mapping between the symmetrical un-directed graph structures and a real-valued vector. The approach will be illustrated using a standard benchmark problem in text processing, viz., a subset of the Reuters text corpus. Some observations and further research directions are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.A., Rosenfeld, E. (eds.): Neurocomputing: Foundations of Research. MIT Press, Cambridge (1988)

    Google Scholar 

  2. Blei, D., Lafferty, J.: Dynamic topic models. In: Proceedings of the 23rd international conference on Machine learning, pp. 113–120 (2006)

    Google Scholar 

  3. Blei, D., Lafferty, J.: A correlated topic model of science. Annals of Applied Statistics 1, 17–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    Article  MATH  Google Scholar 

  5. Chau, R., Tsoi, A.C., Hagenbuchner, M., Lee, V.C.S.: A conceptlink graph for text structure mining. In: Australasian Computer Science Conference, Wellington NZ, January 20-24, 2009, pp. 141–149 (2009)

    Google Scholar 

  6. Eckart, G., Yound, G.: The approximation of one matrix by another of lower rank. Psychometrika (1936)

    Google Scholar 

  7. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A self-organizing map for adaptive processing of structured data. IEEE Transactions on Neural Networks 14(3), 491–505 (2003)

    Article  Google Scholar 

  8. Hagenbuchner, M., Sperduti, S., Tsoi, A.C., Kc, M.: Self-organizing maps for cyclic and unbound graphs. In: European Symposium on Artificial Neural Networks, April 23-25 (2008)

    Google Scholar 

  9. Hagenbuchner, M., Zhang, S., Tsoi, A.C., Sperduti, A.: Projection of undirected and non-positional graphs using self organizing maps. In: European Symposium on Artificial Neural Networks - Advances in Computational Intelligence and Learning, April 22-24 (2009)

    Google Scholar 

  10. Hammer, B., Micheli, A., Strickert, M., Sperduti, A.: A general framework for unsupervised processing of structured data. Neurocomputing 57, 3–35 (2004)

    Article  Google Scholar 

  11. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, New York (1994)

    MATH  Google Scholar 

  12. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999 (1999)

    Google Scholar 

  13. Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, Berlin (1989)

    Google Scholar 

  14. Kohonen, T.: Self Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  15. Lawrence, S., Giles, L., Tsoi, A.C.: Rule extraction for financial prediction using recurrent neural networks. Machine Learning 44, 161–183 (2001)

    Article  MATH  Google Scholar 

  16. Lee, D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  17. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)

    Article  Google Scholar 

  18. Pineda, F.J.: Generalization of back-propagation to recurrent neural networks. Pattern Recognition Letters 59, 2229–2232 (1987)

    MathSciNet  Google Scholar 

  19. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech processing. Proceedings of IEEE, 77 (1989)

    Google Scholar 

  20. Salton, G.: Automatic Information Organization and Retrieval. McGraw-Hill, New York (1968)

    Google Scholar 

  21. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009)

    Article  Google Scholar 

  22. Seymore, K., McCallum, A., Rosenfeld, R.: Hidden markov model structure for information extraction. In: AAAI 1999 Workshop on Machine Learning for Information Extraction (1999)

    Google Scholar 

  23. Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  24. Wang, X., McCallum, A., Wei, X.: Topical n-grams: Phrase and topic discovery, with an application to information retrieval. In: Proceedings of the 7th IEEE International Conference on Data Mining, ICDM (2007)

    Google Scholar 

  25. Yoo, I., Hu, X., Song, I.: A coherent graph-based semantic clustering and summerization approach for biomedical literature and a new summerization evaluation method. BMC Bioinformatics 8, 1–15 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsoi, A.C., Hagenbuchner, M., Chau, R., Lee, V. (2009). Unsupervised and Supervised Learning of Graph Domains. In: Bianchini, M., Maggini, M., Scarselli, F., Jain, L.C. (eds) Innovations in Neural Information Paradigms and Applications. Studies in Computational Intelligence, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04003-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04003-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04002-3

  • Online ISBN: 978-3-642-04003-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics