Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 245))

  • 904 Accesses

Abstract

Classification task involves inducing a predictive model using a set of labeled samples. The accuracy of the model usually increases as more labeled samples are available. When one has only few samples, the obtained model tends to offer poor results. Even when labeled samples are difficult to get, a lot of unlabeled samples are generally available on which unsupervised learning can be done. In this chapter, a way to combine supervised and unsupervised learning in order to use both labeled and unlabeled samples is explored. The efficiency of the method is evaluated on various UCI datasets and on the classification of a very high resolution remote sensing image when the number of labeled samples is very low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, K.P., Demiriz, A., Maclin, R.: Exploiting unlabeled data in ensemble methods. In: Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Edmonton, AB, pp. 289–296. ACM, New York (2002)

    Google Scholar 

  2. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc 11th Annual Conf. Comp. Learn. Theory, Madison, WI, pp. 92–100. ACM, New York (1998)

    Google Scholar 

  3. Cai, W., Chen, S., Zhang, D.: A simultaneous learning framework for clustering and classification. Pattern Recogn. (in press)

    Google Scholar 

  4. Chawla, N.V., Karakoulas, G.J.: Learning from labeled and unlabeled data: an empirical study across techniques and domains. J. Artif. Intell. Res. 23, 331–366 (2005)

    MATH  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. the Royal Stat. Society Series B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  6. Deodhar, M., Ghosh, J.: A framework for simultaneous co-clustering and learning from complex data. In: Berkhin, P., Caruana, R., Wu, X. (eds.) Proc. 13th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Jose, CA, pp. 250–259. ACM, New York (2007)

    Chapter  Google Scholar 

  7. Goldman, S., Zhou, Y.: Enhancing supervised learning with unlabeled data. In: Langley, P. (ed.) Proc. 17th Int. Conf. Mach. Learn., Stanford, CA, pp. 327–334. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  8. Hoffbeck, J.P., Landgrebe, D.A.: Covariance matrix estimation and classification with limited training data. IEEE Trans. Pattern Analysis Mach. Intell. 18(7), 763–767 (1996)

    Article  Google Scholar 

  9. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 5–63 (1968)

    Article  Google Scholar 

  10. Jia, X., Richards, J.A.: Cluster-space representation for hyperspectral data classification. IEEE Trans. Geoscience and Remote Sensing 40(3), 593–598 (2002)

    Article  Google Scholar 

  11. Joachims, T.: Transductive inference for text classification using support vector machines. In: Bratko, I., Dzerovski, S. (eds.) Proc. 16th Int. Conf. Mach. Learn., Bled, Slovenia, pp. 200–209. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  12. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proc. 5th Berkeley Symp. Math. Stat. Probability, Berkeley, CA, pp. 281–297 (1967)

    Google Scholar 

  13. Morgan, J.T., Ham, J., Crawford, M.M., Henneguelle, A., Ghosh, J.: Adaptive feature spaces for land cover classification with limited ground truth data. Int. J Pattern Recogn. Artif. Intell. 18(5), 777–799 (2004)

    Article  Google Scholar 

  14. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, University of California, Irvine, Dept. of Information and Computer Sciences, http://www.ics.uci.edu/~mlearn/MLRepository.html

  15. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)

    Article  MATH  Google Scholar 

  16. Raskutti, B., Ferrá, H.L., Kowalczyk, A.: Combining clustering and co-training to enhance text classification using unlabelled data. In: Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Edmonton, AB, pp. 620–625. ACM, New York (2002)

    Google Scholar 

  17. Seeger, M.: Learning with labeled and unlabeled data. University of Edinburgh, Scotland (2002), http://www.kyb.mpg.de/bs/people/seeger/papers/review.pdf

  18. Shahshahani, B.M., Landgrebe, D.: The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geoscience and Remote Sensing 32(5), 1087–1095 (1994)

    Article  Google Scholar 

  19. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Analysis Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  20. Zhou, Z.-H., Zhan, D.-C., Yang, Q.: Semi-supervised learning with very few labeled training examples. In: Proc. 22nd AAAI Conf. Artif. Intell., Vancouver, BC, pp. 675–680. AAAI Press, Menlo Park (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wemmert, C., Forestier, G., Derivaux, S. (2009). Improving Supervised Learning with Multiple Clusterings. In: Okun, O., Valentini, G. (eds) Applications of Supervised and Unsupervised Ensemble Methods. Studies in Computational Intelligence, vol 245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03999-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03999-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03998-0

  • Online ISBN: 978-3-642-03999-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics