Skip to main content

Evaluating Hybrid Ensembles for Intelligent Decision Support for Intensive Care

  • Chapter
Applications of Supervised and Unsupervised Ensemble Methods

Part of the book series: Studies in Computational Intelligence ((SCI,volume 245))

Abstract

The huge amount of data available in an Intensive Care Unit (ICU) makes ICUs an attractive field for data analysis. However, effective decision support systems operating in such an environment should not only be accurate but also as autonomous as possible, being capable of maintaining good performance levels without human intervention. Moreover, the complexity of an ICU setting is such that available data only manages to cover a limited part of the feature space. Such characteristics led us to investigate the development of ensemble update techniques capable of improving the discriminative power of the ensemble. Our chosen technique is inspired by the Dynamic Weighted Majority algorithm, an algorithm initially developed for the concept drift problem. In this paper we will show that in the problem we are addressing, simple weight updates do not improve results, whereas an ensemble, where we allow not only weight updates, but also the creation and eliminations of models, significantly increases classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnott, D., Pervan, G.: A critical analysis of decision support systems research. J. Inf. Tech. 20(2), 67–87 (2005)

    Article  Google Scholar 

  2. Buchanan, B., Shortliffe, E.: Rule-based expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)

    Google Scholar 

  3. Chang, R., Jacobs, S., Lee, B.: Predicting outcome among intensive care unit patients using computerised trend analysis of daily apache ii scores corrected for organ system failure. Intensive Care Medicine 14(5), 558–566 (1988)

    Article  Google Scholar 

  4. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34. American Association for Artificial Intelligence, Menlo Park (1996)

    Google Scholar 

  6. Gago, P., Santos, M.F., Silva, Á., Cortez, P., Neves, J., Gomes, L.: Intcare: a knowledge discovery based intelligent decision support system for intensive care medicine. J. Decision Syst. 14(3), 241–259 (2005)

    Article  Google Scholar 

  7. Ho, T.-K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Analysis Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  8. Kim, Y., Street, W.N.: An intelligent system for customer targeting: a data mining approach. Decision Support Syst. 37(2), 215–228 (2004)

    Google Scholar 

  9. Klinkenberg, R., Ruping, S.: Concept drift and the importance of examples. In: Franke, J., Nakhaeizadeh, G., Renz, I. (eds.) Text Mining - Theoretical Aspects and Applications, pp. 55–77. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  10. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: A new ensemble method for tracking concept drift. In: Proc. 3rd IEEE Int. Conf. Data Mining, Melbourne, FL, pp. 123–130. IEEE Comp. Soc., Los Alamitos (2003)

    Google Scholar 

  11. Kulikowski, C.A., Weis, S.M.: Representation of expert knowledge for consultation: the CASNET and EXPERT projects. In: Artificial Intelligence in Medicine, pp. 21–56. Westview Press, Boulder (1982)

    Google Scholar 

  12. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  13. Larssan, J.E., Hayes-Roth, B.: Guardian: an intelligent autonomous agent for medical monitoring and diagnosis. Intell. Syst. and their Appl. 13(1), 58–64 (1998)

    Article  Google Scholar 

  14. Lasko, T.A., Bhagwat, J.G., Zou, K.H., Ohno-Machado, L.: The use of receiver operating characteristic curves in biomedical informatics. J. Biomedical Informatics 38(5), 404–415 (2005)

    Article  Google Scholar 

  15. Le Gall, J.R., Lemeshow, S., Saulnier, F.: A new simplified acute physiology score (saps ii) based on a European/North American multicenter study. J Amer. Med. Assoc. 270(24), 2957–2963 (1993)

    Article  Google Scholar 

  16. Lin, C., Hsieh, P.-J.: A fuzzy decision support system for strategic portfolio management. Decision Support Syst. 38(3), 383–398 (2004)

    Article  Google Scholar 

  17. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Information and Computation 108(2), 212–261 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Michalewicz, Z., Schmidt, M., Michalewicz, M., Chiriac, C.: Adaptive Business Intelligence. Springer, Heidelberg (2006)

    Google Scholar 

  19. Miranda, D., Nat, R., Nijk, A., Schaufeling, W., Lapichino, G.: Nursing activities score. Critical Care Medicine 31(2), 374–382 (2003)

    Article  Google Scholar 

  20. Pople, H.: Evolution of an expert system: from Internist to Caduceus. In: de Lotto, I., Stefanelli, M. (eds.) Artificial Intelligence in Medicine, pp. 179–208. Elsevier Science Publisher, Amsterdam (1985)

    Google Scholar 

  21. Santos, M.F.: Sistemas de Classificação em Ambientes Distribuidos. PhD thesis, Universidade do Minho (1999)

    Google Scholar 

  22. Santos, M.F., Pereira, J., Silva, Á.: A cluster framework for data mining models – an application to intensive medicine. In: Chen, C.-S., Filipe, J., Seruca, I., Cordeiro, J. (eds.) Proc. 7th Int. Conf. Enterprise Information Systems, Miami, FL, pp. 163–168 (2005)

    Google Scholar 

  23. Santos, M.F., Neves, J., Abelha, A., Silva, Á., Rua, F.: Augmented data mining over clinical databases: using learning classifier systems. In: Proc. 4th Int. Conf. Enterprise Information Systems, Ciudad Real, Spain, pp. 512–516 (2002)

    Google Scholar 

  24. Silva, Á., Cortez, P., Santos, M.F., Gomes, L., Neves, J.: Multiple organ failure diagnosis using adverse events and neural networks. In: Seruca, I., Cordeiro, J., Hammoudi, S., Filipe, J. (eds.) Enterprise Information Systems VI, pp. 127–134. Springer, Dordrecht (2006)

    Chapter  Google Scholar 

  25. Silva, Á., Cortez, P., Santos, M.F., Gomes, L., Neves, J.: Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif. Intell. in Medicine 36(3), 223–234 (2006)

    Article  Google Scholar 

  26. Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past, present, and future of decision support technology. Decision Support Syst. 33(2), 111–126 (2002)

    Article  Google Scholar 

  27. Tsang, E., Yung, P.: Eddie-automation: a decision support tool for financial forecasting. Decision Support Syst. 37(4), 559–565 (2004)

    Article  Google Scholar 

  28. Vahidov, R., Kersten, G.E.: Decision station: situating decision support systems. Decision Support Syst. 38(22), 283–303 (2004)

    Article  Google Scholar 

  29. Vicari, R.M., Flores, C.D., Silvestre, A.M., Seixas, L.J., Ladeira, M., Coelho, H.: A multi-agent intelligent environment for medical knowledge. Artif. Intell. in Medicine 27(3), 335–366 (2003)

    Article  Google Scholar 

  30. Vincent, J., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., Reinhart, C.K., Suter, P.M., Thijs, L.G.: The sofa (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Medicine 22(7), 707–710 (1996)

    Article  Google Scholar 

  31. Wang, W., Partridge, D., Etherington, J.: Hybrid ensembles and coincident-failure diversity. In: Proc. Int. Joint Conf. Neural Networks, Washington, DC, pp. 2376–2381. IEEE Comp. Soc., Los Alamitos (2001)

    Google Scholar 

  32. Weiss, G.: Multiagent Systems A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  33. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  34. Zweig, M.H., Campbell, G.: Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 39(4), 561–577 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gago, P., Santos, M.F. (2009). Evaluating Hybrid Ensembles for Intelligent Decision Support for Intensive Care. In: Okun, O., Valentini, G. (eds) Applications of Supervised and Unsupervised Ensemble Methods. Studies in Computational Intelligence, vol 245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03999-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03999-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03998-0

  • Online ISBN: 978-3-642-03999-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics