Skip to main content

A Data Distribution Strategy for Scalable Main-Memory Database

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5731))

Abstract

Main-Memory Database (MMDB) System is more superior in less response times and higher transaction throughputs than traditional Disk- Resident Database (DRDB) System. But the high performance of MMDB depends on the single server’s main memory capacity, which is restricted by hardware technologies and operating system. In order to resolve the contradiction between requirements of high performance and limited memory resource, we propose a scalable Main-Memory database system ScaMMDB which distributes data and operations to several nodes and makes good use of every node’s resource. In this paper we’ll present the architecture of ScaMMDB and discuss a data distribution strategy based on statistics and clustering. We evaluate our system and data distribution strategy by comparing with others. The results show that our strategy performs effectively and can improve the performance of ScaMMDB.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Organizations and their vendors for their achievements in the 2005 TopTen Program, http://www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp

  2. Jagadish, H.V., Lieuwen, D., Rastogi, R., Silberschatz, A., Sudarshan, S.: Dalí a high performance main memory storage manager. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), pp. 48–59 (1994)

    Google Scholar 

  3. Oracle TimesTen In-Memory Database Architectural Overview Release 6.0, http://www.oracle.com/database/timesten.html

  4. Boncz, P.A.: Monet: A Next-Generation DBMS Kernel for Query-Intensive Applications. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands (2002)

    Google Scholar 

  5. MonetDB, http://monetdb.cwi.nl

  6. Manegold, S., Boncz, P., Nes, N.: Cache-conscious radix decluster projections. In: Proceedings of thirtieth International conference on Very Large Data Bases (VLDB 2004), pp. 684–695 (2004)

    Google Scholar 

  7. Luan, H., Du, X., Wang, S.: J + 2Tree: a new index structure in main memory Database Systems for Advanced Applications. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 386–397. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Lee, I., Yeom, H.Y., Park, T.: A New Approach for Distributed Main Memory Database System: A Causal Commit Protocol. IEICE Trans. Inf. & Syst. E87-D, 196–296 (2004)

    Google Scholar 

  9. Chung, S.M.: Parallel Main Memory Database System. Department of Computer Science and Engineering Wright State University (1992)

    Google Scholar 

  10. Antunes, R., Furtado, P.: Hardware Capacity Evaluation in Shared-Nothing Data Warehouses. In: IEEE International Parallel and Distributed Processing Symposium, pp. 1–6 (2007)

    Google Scholar 

  11. Han, W.-S., et al.: Progressive optimization in a shared-nothing parallel database. In: Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pp. 809–820 (2007)

    Google Scholar 

  12. Hoer, J., Severance, D.: The Uses of Cluster Analysis in Physical Database Design. In: Proc. 1st International Conference on VLDB, pp. 69–86 (1975)

    Google Scholar 

  13. McCormick, W., Schweitzer, P., White, T.: Problem Decomposition and Data Reorganization by a Clustering technique Operations Research (1972)

    Google Scholar 

  14. Navathe, S., Ra, M.: Vertical Partitioning for Database Design: A Graphical Algorithm. ACM SIGMOD (1989)

    Google Scholar 

  15. Muthuraj, J.: A Formal Approach to the Vertical Partitioning Problem in Distributed Database Design. University of Florida (1992)

    Google Scholar 

  16. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publisher, San Francisco (2000)

    MATH  Google Scholar 

  17. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A survey. ACM Comput. Surv. 31, 264–323 (1999)

    Article  Google Scholar 

  18. TPC BenchmarkTM H, http://www.tpc.org

  19. Johnson, S.C.: Hierarchical Clustering Schemes. Psychometrika 2, 241–254 (1967)

    Article  Google Scholar 

  20. D’andrade, R.: U-Statistic Hierarchical Clustering. Psychometrika 4, 58–67 (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, Y., Zhang, Y., Ji, X., Wang, Z., Wang, S. (2009). A Data Distribution Strategy for Scalable Main-Memory Database. In: Chen, L., et al. Advances in Web and Network Technologies, and Information Management. APWeb WAIM 2009 2009. Lecture Notes in Computer Science, vol 5731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03996-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03996-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03995-9

  • Online ISBN: 978-3-642-03996-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics