Skip to main content

Footstep Planning Based on Univector Field Method for Humanoid Robot

  • Conference paper
Advances in Robotics (FIRA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5744))

Included in the following conference series:

Abstract

This paper proposes a footstep planning algorithm based on univector field method optimized by evolutionary programming for humanoid robot to arrive at a target point in a dynamic environment. The univector field method is employed to determine the moving direction of the humanoid robot at every footstep. Modifiable walking pattern generator, extending the conventional 3D-LIPM method by allowing the ZMP variation while in single support phase, is utilized to generate every joint trajectory of a robot satisfying the planned footstep. The proposed algorithm enables the humanoid robot not only to avoid either static or moving obstacles but also step over static obstacles. The performance of the proposed algorithm is demonstrated by computer simulations using a modeled small-sized humanoid robot HanSaRam (HSR)-VIII.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nishiwaki, K., Sugihara, T., Kagami, S., Kanehiro, F., Inaba, M., Inoue, H.: Design and Development of Research Platform for Perception- Action Integration in Humanoid Robot: H6. In: Proc. IEEE/RSJ Int. Conference on Intelligent Robots and Systems, pp. 1559–1564 (2000)

    Google Scholar 

  2. Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., Akachi, K., Isozumi, T.: Humanoid Robot HRP-2. In: Proc. IEEE Int’l. Conf. on Robotics and Automation, ICRA 2004 (2004)

    Google Scholar 

  3. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2478–2483 (2002)

    Google Scholar 

  4. Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H., Takanishi, A.: Development of a New Humanoid Robot WABIAN-2. In: Proc. IEEE Int’l. Conf. on Robotics and Automation, ICRA 2006 (2006)

    Google Scholar 

  5. Kim, Y.-D., Lee, B.-J., Ryu, J.-H., Kim, J.-H.: Landing Force Control for Humanoid Robot by Time-Domain Passivity Approach. IEEE Trans. on Robotics 23(6), 1294–1301 (2007)

    Article  Google Scholar 

  6. Kanal, L., Kumar, V. (eds.): Search in Artificial Intelligence. Springer, New York (1988)

    MATH  Google Scholar 

  7. Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst., Man, Cybern. 20, 1179–1187 (1989)

    Article  Google Scholar 

  8. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Syst., Man, Cybern. 7, 278–288 (1991)

    Google Scholar 

  9. Yagi, M., Lumelsky, V.: Biped Robot Locomotion in Scenes with Unknown Obstacles. In: Proc. IEEE Int’l. Conf. on Robotics and Automation (ICRA 1999), Detroit, MI, May 1999, pp. 375–380 (1999)

    Google Scholar 

  10. Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., Kanade, T.: Footstep planning for the honda asimo humanoid. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 631–636 (2005)

    Google Scholar 

  11. Ayaz, Y., Munawar, K., Bilal Malik, M., Konno, A., Uchiyama, M.: Human-Like Approach to Footstep Planning Among Obstacles for Humanoid Robots. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5490–5495 (2006)

    Google Scholar 

  12. Kim, Y.-J., Kim, J.-H., Kwon, D.-S.: Evolutionary Programming-Based Uni-vector Field Navigation Method for Fast Mobile Robots. IEEE Trans. on Systems, Man and Cybernetics - Part B - Cybernetics 31(3), 450–458 (2001)

    Article  Google Scholar 

  13. Kim, Y.-J., Kim, J.-H., Kwon, D.-S.: Univector Field Navigation Method for Fast Mobile Robots. Korea Advanced Institute of Science and Technology, Ph.D. Thesis

    Google Scholar 

  14. Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable Walking Pattern of a Humanoid Robot by Using Allowable ZMP Variation. IEEE Transaction on Robotics 24(4), 917–925 (2008)

    Article  Google Scholar 

  15. Lim, Y.-S., Choi, S.-H., Kim, J.-H., Kim, D.-H.: Evolutionary Univector Field-based Navigation with Collision Avoidance for Mobile Robot. In: Proc. 17th World Congress The International Federation of Automatic Control, Seoul, Korea (July 2008)

    Google Scholar 

  16. Michel, O.: Cyberbotics Ltd. WebotsTM: Professional mobile robot simulation. Int. J. of Advanced Robotic Systems 1(1), 39–42 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, Y., Kim, JH. (2009). Footstep Planning Based on Univector Field Method for Humanoid Robot. In: Kim, JH., et al. Advances in Robotics. FIRA 2009. Lecture Notes in Computer Science, vol 5744. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03983-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03983-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03982-9

  • Online ISBN: 978-3-642-03983-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics