Skip to main content

Mott Effect in Nuclear Matter

  • Chapter
  • First Online:
Metal-to-Nonmetal Transitions

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 132))

  • 868 Accesses

Abstract

Nuclear matter consisting of protons and neutrons is an interesting strongly interacting quantum system featuring many-body effects. The equation of state (EoS) of nuclear matter at finite temperature and density with various proton fractions is considered, in particular the region of medium excitation energy given by the temperature range T ≤ 30 MeV and the baryon density range ρB ≤ 1014. 2 g cm − 3. In this region (“warm and dilute asymmetric nuclear matter”), the formation of few-body correlations, in particular bound clusters, has to be taken into account. Based on a many-particle Green function approach, the medium modification of the clusters is described by self-energy and Pauli blocking effects, and the cluster-mean field approximation is given. These medium effects lead to a shift of the binding energies as well as a modification of scattering properties. Because of the shift, bound states will merge with the continuum of scattering states at increasing density and are dissolved (Mott effect). Results of the Mott effect for different nuclei embedded in nuclear matter are given.

Thermodynamic properties are influenced by the formation and dissolution of bound states. The nuclear matter EoS is considered within a generalized Beth–Uhlenbeck approach. The connection with the Brueckner Hartree–Fock and Relativistic Mean-Field theory is outlined. Benchmarks such as virial expansion in the low-density limit or the low-temperature limit are considered. An interesting effect is the formation of a two-nucleon quantum condensate, showing the crossover from Cooper pairing to Bose–Einstein condensation. Correlations in the condensate such as quartetting are an interesting issue. The structure of the quantum condensate is determined by the existence of bound states and the Mott effect.

The resulting thermodynamic properties, incorporating the Mott effect, are of interest for heavy-ion collisions and astrophysical applications. The Mott effect is also of relevance for the structure of finite nuclei, especially dilute excited states like the Hoyle state of 12C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baldo (ed.), Nuclear Methods and the Nuclear Equation of State (World Scientific, Singapore, 1999)

    Google Scholar 

  2. T. Klähn et al., Phys. Rev. C 74, 035802 (2006)

    Article  ADS  Google Scholar 

  3. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971); A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Mechanics (Dover, New York, 1975)

    Google Scholar 

  4. G. Röpke, L. Münchow, H. Schulz, Nucl. Phys. A 379, 536 (1982); G. Röpke, M. Schmidt, L. Münchow, H. Schulz, Phys. Lett. B 110, 21 (1982)

    Article  ADS  Google Scholar 

  5. G. Röpke, T. Seifert, H. Stolz, R. Zimmermann, Phys. Stat. Sol. B 100, 215 (1980); G. Röpke, M. Schmidt, L. Münchow, H. Schulz, Nucl. Phys. A 399, 587 (1983); G. Röpke, in Aggregation Phenomena in Complex Systems, ed. by J. Schmelzer et al., Chaps. 4, 12 (Wiley-VCH, New York, 1999); Dukelsky, G. Röpke, P. Schuck, Nucl. Phys. A 628, 17 (1998)

    Article  ADS  Google Scholar 

  6. M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. (NY) 202, 57 (1990)

    Article  ADS  Google Scholar 

  7. M. Beyer, W. Schadow, C. Kuhrts, G. Röpke, Phys. Rev. C 60, 034004 (1999); M. Beyer, S.A. Sofianos, C. Kuhrts, G. Röpke, P. Schuck, Phys. Letters B 488, 247 (2000)

    Article  ADS  Google Scholar 

  8. H. Stein, A. Schnell, T. Alm, G. Röpke, Z. Phys. A 351, 295 (1995)

    Article  ADS  Google Scholar 

  9. G. Röpke, A. Schnell, P. Schuck, P. Nozières, Phys. Rev. Lett. 80, 3177 (1998)

    Article  ADS  Google Scholar 

  10. G. Röpke, A. Schnell, P. Schuck, U. Lombardo, Phys. Rev. C 61, 024306 (2000)

    Article  ADS  Google Scholar 

  11. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001)

    Article  ADS  Google Scholar 

  12. H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Progr. Theor. Phys. 100, 1013 (1998); N. Ohnishi, K. Kotake, S. Yamada, Astrophys. J. 667, 375 (2006)

    Article  ADS  Google Scholar 

  13. J. Haidenbauer, W. Plessas, Phys. Rev. C 30, 1822 (1984); L. Mathelitsch, W. Plessas, W. Schweiger, Phys. Rev. C 36, 65 (1986)

    Article  ADS  Google Scholar 

  14. C.J. Horowitz, A. Schwenk, Nucl. Phys. A 776, 55 (2006)

    Article  ADS  Google Scholar 

  15. E. O’Connor, D. Gazit, C.J. Horowitz, A. Schwenk, N. Barnea, Phys. Rev. C 75, 055803 (2007)

    Article  ADS  Google Scholar 

  16. Y. Yamaguchi, Phys. Rev. 95, 1628 (1954); J.F. Berger, M. Girod, D. Gogny, Comp. Phys. Comm 63, 365 (1991); T.R. Mongan, Phys. Rev. 178, 1597 (1969)

    Article  ADS  Google Scholar 

  17. J. Margueron, E. van Dalen, C. Fuchs, Phys. Rev. C 76, 034309 (2007) [arXiv:0707.0354 [nucl-th]]

    Article  ADS  Google Scholar 

  18. J.M. Lattimer, F.D. Swesty, Nucl. Phys. A 535, 331 (1991)

    Article  ADS  Google Scholar 

  19. S. Typel, Phys. Rev. C 71, 064301 (2005)

    Article  ADS  Google Scholar 

  20. G. Röpke, M. Schmidt, H. Schulz, Nucl. Phys. A 424, 594 (1984)

    Article  ADS  Google Scholar 

  21. G. Röpke, A. Grigo, K. Sumiyoshi, Hong Shen, Phys. Part. Nucl. Lett. 2, 275 (2005)

    Google Scholar 

  22. G. Audi, A.H. Wapstra, Nucl. Phys. A 565, 1 (1993)

    Article  ADS  Google Scholar 

  23. G. Röpke, A. Grigo, K. Sumiyoshi, Hong Shen, in Superdense QCD Matter and Compact Stars, ed. by D. Blaschke, A. Sedrakian. NATO Science Series (Springer, Dordrecht, 2006), pp. 75–91

    Google Scholar 

  24. G. Röpke, in Clusters in Nuclear Matter, ed. by S. Hernandez, J.W. Clark. Condensed Matter Theories, vol 16 (Nova Sciences Publ., New York, 2001)

    Google Scholar 

  25. S. Kowalski et al., Phys. Rev. C 75, 014601 (2007)

    Article  ADS  Google Scholar 

  26. G. Röpke, Ann. Physik (Leipzig) 3, 145 (1994); R. Haussmann, Z. Physik B 91, 291 (1993)

    Article  Google Scholar 

  27. P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 159 (1985)

    Article  Google Scholar 

  28. A. Schnell, G. Röpke, P. Schuck, Phys. Rev. Lett. 83, 1926 (1999)

    Article  ADS  Google Scholar 

  29. M. Randeria, Varenna Lectures 1997, cond-mat/9710223

    Google Scholar 

  30. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004); A. Schnell, Ph.D. Thesis, Rostock, 1996

    Article  ADS  Google Scholar 

  31. T. Alm, B.L. Friman, G. Röpke, H. Schulz, Nucl. Phys. A 551, 45 (1993)

    Article  ADS  Google Scholar 

  32. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)

    Article  MATH  ADS  Google Scholar 

  33. M.T. Johnson, J.W. Clark, Kinam 2, 3 (1980) (PDF available at Faculty web page of J.W. Clark at http://wuphys.wustl.edu); see also J.W. Clark, T.P. Wang, Ann. Phys. (N.Y.) 40, 127 (1966) and G.P. Mueller, J.W. Clark, Nucl. Phys. A 155, 561 (1970)

    Google Scholar 

  34. K.A. Gernoth, M.L. Ristig, T. Lindenau, Int. J. Mod. Phys. B 21, 2157 (2007); G. Senger, M.L. Ristig, C.E. Campbell, J.W. Clark, Ann. Phys. (N.Y.) 218, 160 (1992); R. Pantfoerder, T. Lindenau, M.L. Ristig, J. Low Temp. Phys. 108, 245 (1997)

    Article  ADS  Google Scholar 

  35. S. Ali, A.R. Bodmer, Nucl. Phys. A 80, 99 (1966)

    Article  Google Scholar 

  36. G. Röpke, P. Schuck, Mod. Phys. Lett. A 21, 2513 (2006)

    Article  ADS  Google Scholar 

  37. Z.F. Shehadeh et al., Int. J. Mod. Phys. B 21, 2429 (2007); M.N.A. Abdullah et al., Nucl. Phys. A 775, 1 (2006)

    Article  ADS  Google Scholar 

  38. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001)

    Article  ADS  Google Scholar 

  39. Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, T. Yamada (in preparation)

    Google Scholar 

  40. Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, Phys. Rev. Lett. 101, 082502 (2008)

    Article  ADS  Google Scholar 

  41. Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kato, Y. Suzuki, E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980)

    Article  ADS  Google Scholar 

  42. E. Uegaki, S. Okabe, Y. Abe, H. Tanaka, Prog. Theor. Phys. 57, 1262 (1977); E. Uegaki, Y. Abe, S. Okabe, H. Tanaka, Prog. Theor. Phys. 59, 1031 (1978); 62, 1621 (1979)

    Article  ADS  Google Scholar 

  43. Y. Fukushima, M. Kamimura, Proc. Int. Conf. on Nuclear Structure, Tokyo, 1977, ed. by T. Marumori (Suppl. of J. Phys. Soc. Japan, Vol. 44, 1978), p. 225; M. Kamimura, Nucl. Phys. A 351, 456 (1981)

    Google Scholar 

  44. P. Navrátil, J.P. Vary, B.R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); P. Navrátil, J.P. Vary, B.R. Barrett, Phys. Rev. C 62, 054311 (2000); B.R. Barrett, B. Mihaila, S.C. Pieper, R.B. Wiringa, Nucl. Phys. News, 13, 17 (2003)

    Article  ADS  Google Scholar 

  45. H. Horiuchi, Prog. Theor. Phys. 51, 1266 (1974); 53, 447 (1975)

    Article  ADS  Google Scholar 

  46. Y. Funaki, H. Horiuchi, A. Tohsaki, P. Schuck, G. Röpke, Prog. Theor. Phys. 108, 297 (2002)

    Article  ADS  Google Scholar 

  47. M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 98, 032501 (2007)

    Article  ADS  Google Scholar 

  48. H. Matsumura, Y. Suzuki, Nucl. Phys. A 739, 238 (2004)

    Article  ADS  Google Scholar 

  49. T. Yamada, P. Schuck, Eur. Phys. J. A 26, 185 (2005)

    Article  ADS  Google Scholar 

  50. T. Wakasa et al., Phys Lett B 653, 173 (2007)

    Article  ADS  Google Scholar 

  51. Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, T. Yamada, Nucl. Phys. News 17(04), 11 (2007)

    Article  Google Scholar 

  52. G. Röpke, Phys. Lett. B 185, 281 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Röpke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Röpke, G. (2010). Mott Effect in Nuclear Matter. In: Redmer, R., Hensel, F., Holst, B. (eds) Metal-to-Nonmetal Transitions. Springer Series in Materials Science, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03953-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03953-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03952-2

  • Online ISBN: 978-3-642-03953-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics