Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 25/10))

Abstract

The threedimensional finite element (FE) model of eucaryotic cell presented in the paper is based on similar models published recently; it comprehends elements representing cell membrane, cytoplasm and nucleus, and a complex tensegrity structure representing cytoskeleton. In contrast to the previous models, this tensegrity structure consists of several parts. External and internal parts count 30 struts and 60 cables each and their corresponding nodes are interconnected by 30 radial members; these parts represent cortical, nuclear and deep cytoskeletons, respectively. This arrangement enables us to simulate the load transmission from the extracellular space via membrane receptors (focal adhesions) to the central part of the cell (nucleus, centrosome); this ability of the model was tested by simulation of some mechanical tests of isolated cells, in particular tension test with micropipettes, indentation test and magnetic tweezer test. Although material properties of components have been defined as realistic as possible on the base of the mechanical tests with vascular smooth muscle cells, they were not identified in fact and are not unique probably. However, simulations of the tests have shown the ability of the model to simulate the global load-deformation response of the cell under various types of loadings, as well as several substantial global features of the cell behaviour, e.g. “at a distance effect”, non-linear stiffening with increasing load, or linear dependence of stiffness on increasing prestrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bursa, J., Fuis, V. (2009). Finite element simulation of mechanical tests of individual cells. In: Dössel, O., Schlegel, W.C. (eds) World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. IFMBE Proceedings, vol 25/10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03900-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03900-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03899-0

  • Online ISBN: 978-3-642-03900-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics