Skip to main content

Phospholipase A in Plant Signal Transduction

  • Chapter
  • First Online:
Lipid Signaling in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 16))

Abstract

Phospholipase A (PLA) is an acyl hydrolase, which hydrolyses phospholipids either at the hydroxyl group of the C1 (phospholipase A1; PLA1) or the C2 atom (PLA2 ). Structurally different enzymes can have this activity. These enzymes are (1) the small (14 kDa) secreted phospholipases A2 (sPLA2) found in fungi, plants and animals; (2) the soluble or secreted patatin-related phospholipases A2 (pPLA2), including the homologous soluble calcium-independent phosholipases A2 (iPLA2) in animals; (3) the cytosolic or calcium-activated phospholipases A2 (cPLA2); (4) the lipase-like phospholipase A1 and (5) the bacterial dimeric phospholipase A2. Since, bacterial phospholipase A2 is not found in plants, it is not discussed here. Both pPLA2 and the homologous iPLA2 hydrolyse in vitro phospholipids at the C1- and C2-position so that the plant enzymes are often called PLA (non-specified A), but indications for PLA2 specificity in vivo exist and hence called pPLA2 here. Although few facts are known about the functions of sPLA2 (four genes in Arabidopsis), there is rapidly accumulating evidence that the pPLA2 in plants (ten genes in Arabidopsis) have function in several signal transduction pathways, such as auxin, pathogen and, perhaps, light signaling. The known localisation of five different enzymes is in the cytosol. Thus, the pPLA2 of plants takes over the function in plant signal transduction, which is fulfilled by the cPLA2 in animal cells. Evidence that the breakdown products, free fatty acid and lysophospholipids are second messengers is fragmentary. The PLA1 group in plants has a preference for hydrolysis of galactolipids and is localised to chloroplasts, so they could be the enzymes to release linolenic acid as a precursor for jasmonate synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann EK, Kempner ES, Dennis EA (1994) Ca2+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. J Biol Chem 269:9227–9233

    CAS  PubMed  Google Scholar 

  • Alferez F, Singh S, Umbach AL, Hockema B, Burns JK (2005) Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methly-4-nitro-1H-pyrazole are mediated by lipid signaling. Plant Cell Environ 28:1436–1449

    Article  CAS  Google Scholar 

  • Andersson MX, Larsson KE, Tjellström H, Liljenberg C, Sandelius AS (2005) Phosphate-limited Oat. The plasma membrane and the tonoplast as major targets for phospholipids to glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586

    Article  CAS  PubMed  Google Scholar 

  • André B, Scherer GFE (1991) Stimulation by auxin of phospholipase A in membrane vesicles from an auxin-sensitive tissue is mediated by an auxin receptor. Planta 185:209–214

    Article  Google Scholar 

  • Andrews DL, Beames B, Summers MD, Park WD (1988) Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning an abundant expression in a baculovirus vector. Biochem J 252:199–206

    CAS  PubMed  Google Scholar 

  • Aoki J, Inoue A, Makide K, Saiki N, Arai H (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89:197–204

    Article  CAS  PubMed  Google Scholar 

  • Badescu GO, Napier RM (2006) Receptors for auxin: will it all end in TIRs? Trends Plant Sci. 11:217–223

    Article  CAS  PubMed  Google Scholar 

  • Bahn SC, Lee HY, Kim HJ, Ryu SB, Shin JS (2003) Characterization of Arabidopsis secretory phospholipase A2-gamma cDNA and its enzymatic properties. FEBS Lett 553:113–118

    Article  CAS  PubMed  Google Scholar 

  • Balsinde J, Balboa MA (2005) Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells. Cell Signal 17:1052–1062

    Article  CAS  PubMed  Google Scholar 

  • Balsinde J, Dennis EA (1997) Function and inhibition of intracellular calcium-independent phospholipase A2. J Biol Chem 272:16069–16072

    Article  CAS  PubMed  Google Scholar 

  • Balsinde J, Bianco ID, Ackermann EJ, Conde-Frieboes K, Dennis EA (1995) Inhibititon of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. Proc Natl Acad Sci USA 92:8527–8531

    Article  CAS  PubMed  Google Scholar 

  • Bargmann BOR, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr OpinPlant Biol 9:515–522

    Article  CAS  Google Scholar 

  • Baudouin E, Meskiene I, Hirt H (1999) Unsaturated fatty acids inhibit MP2C, a protein phosphatase 2C involved in the wound-induced MAP kinase pathway regulation. Plant J 20:343–348

    Article  CAS  PubMed  Google Scholar 

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    Article  CAS  PubMed  Google Scholar 

  • Calderon-Villalobos LI, Kuhnle C, Li H, Rosso M, Weisshaar B, Schwechheimer C (2006) LucTrap vectors are tools to generate luciferase fusions for the quantification of transcript and protein abundance in vivo. Plant Physiol 141:3–14

    Article  CAS  PubMed  Google Scholar 

  • Carrière F, Withers-Martinez C, van Tilbeurgh H, Roussel A, Cambillau C, Verger R (1998) Structural basis for the substrate selectivity of pancreatic lipases and some related proteins. Biochim Biophys Acta 1376:417–432

    PubMed  Google Scholar 

  • Chandra S, Heinstein PF, Low PS (1996) Activation of phospholipase A by plant defense elicitors. Plant Physiol 110:979–986

    CAS  PubMed  Google Scholar 

  • Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65:1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    CAS  PubMed  Google Scholar 

  • Dennis EA (1997) The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci 22:1–2

    Article  CAS  PubMed  Google Scholar 

  • Dessen A (2000) Structure and mechanism of human cytosolic phospholipase A2. Biochim Biophys Acta 1488:40–47

    CAS  PubMed  Google Scholar 

  • Dessen A, Tang J, Schmidt H, Stahl M, Clark JD, Seehra J, Somers WS (1999) Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. Cell 97:349–360

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9:302–308

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Dhondt S, Geoffroy P, Stelmach BA, Legrand M, Heitz T (2000) Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J 23:431–440

    Article  CAS  PubMed  Google Scholar 

  • Dhondt S, Gouzerh G, Muller A, Legrand M, Heitz T (2002) Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant J 32:749–762

    Article  CAS  PubMed  Google Scholar 

  • Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M, Boller T, Felix G, Amrhein N, Bucher M (2007) Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318:265–268

    Article  CAS  PubMed  Google Scholar 

  • Evans JH, Spencer DM, Zweifach A, Leslie CC (2001) Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J Biol Chem 276:30150–30160

    Article  CAS  PubMed  Google Scholar 

  • Farag KM, Palta JP (1993a) Use of lysophosphatidylethanolamine, a natural lipid, to retard tomato leaf and fruit senescence. Physiol Plant 87:515–524

    Article  CAS  Google Scholar 

  • Farag KM, Palta JP (1993b) Use of natural lipids to accelerate ripening and enhance storage life of tomato fruit with and without etephon. Hortic Tech 3:62–65

    Google Scholar 

  • Färber K, Schumann B, Miersch O, Roos W (2003) Selective desensitization of jasmonate- and pH-dependent signaling in the induction of benzophenanthridine biosynthesis in cells of Eschscholzia californica. Phytochemistry 62:491–500

    Article  PubMed  Google Scholar 

  • Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H + -ATPase by preventing interaction with 14–3-3 protein. Plant Cell 19:1617–1634

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa R, Fujikawa Y, Iijima N, Esaka M (2005) Molecular cloning, expression, and characterization of secretory phospholipase A2 in tobacco. Lipids 40:901–908

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Tucker DE, Burchett SA, Leslie CC (2006) Properties of the Group IV phospholipase A2 family. Progr Lip Res 45:487–510

    Article  CAS  Google Scholar 

  • Glover S, Bayburt T, Jonas M, Chi E, Gelb MH (1995) Translocation of the 85-kDa phospholipase A2 from the cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. J Biol Chem 270:15359–15367

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Menzel H, Kraus A (1971) Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100:47–75

    Article  CAS  Google Scholar 

  • Handlogten ME, Huang C, Shiraishi N, Awata H, Miller RT (2001) The Ca2+-sensing receptor activates cytosolic phospholipase A2 via a Gqalpha -dependent ERK-independent pathway. J Biol Chem 276:13941–13948

    CAS  PubMed  Google Scholar 

  • Harper JF, Binder BM, Sussman MR (1993) Calcium and lipid regulation of an Arabidopsis protein kinase expressed in Escherichia coli. Biochem 32:3282–3290

    Article  CAS  Google Scholar 

  • Heinze M, Steighardt J, Gesell A, Schwartze W, Roos W (2007) Regulatory interaction of the Galpha protein with phospholipase A2 in the plasma membrane of Eschscholzia californica. Plant J 52:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg HJ, Simons JW, Dekker N, Egmond MR (2001) Cloning, expression, purification and characterization of patatin, a novel phospholipase A. Eur J Biochem 268:5037–5044

    Article  CAS  PubMed  Google Scholar 

  • Holk A, Rietz S, Zahn M, Paul RU, Quader H, Scherer GFE (2002) Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiol 130:90–101

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Cerny RE, Bhat DS, Brown SM (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation tagging. Plant Physiol 125:573–584

    Article  CAS  PubMed  Google Scholar 

  • Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, Kim WT, Lee YH, Kang H, Lee I (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14:183–192

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    Article  CAS  PubMed  Google Scholar 

  • Jekel PA, Hofsteenge J, Beintema JJ (2003) The patatin-like protein from the latex of Hevea brasiliensis (Hev b 7) is not a vacuolar protein. Phytochem 63:517–522

    Article  CAS  Google Scholar 

  • Jung KM, Kim DK (2000) Purification and characterization of a membrane-associated 48-kilodalton phospholipase A2 in leaves of broad bean. Plant Physiol 123:1057–1067

    Article  CAS  PubMed  Google Scholar 

  • Kasparovsky T, Blein J-P, Mikes V (2004) Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway. Plant Physiol Biochem 42:429–435

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Palta JP (1997) Postharvest dip in lysophosphatidylethanolamine, a natural phospholipid, may prolong vase-life of snapdragon flowers. HortScience 32:888–890

    CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  CAS  PubMed  Google Scholar 

  • Khan WA, Blobe C, Halpern A, Taylor W, Wetsel WC, Burns D, Loomis C, Hannun YA (1993) Selective regulation by protein kinase C isoenzymes by oleic acid in human platelets. J Biol Chem 268:5063–5068

    CAS  PubMed  Google Scholar 

  • Kim DK, Lee HJ, Lee Y (1994) Detection of two phospholipase A2 (PLA2) activities in leaves of higher plants Vicia faba and comparison with mammalian PLA2's. FEBS Lett 343:213–218

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Chung YS, Ok SH, Lee SG, Chung WI, Kim IY, Shin JS (1999) Characterization of the full-length sequences of phospholipase A2 induced during flower development. Biochim Biophys Acta 1489:389–392

    CAS  PubMed  Google Scholar 

  • Kinoshita T, Shimazaki K (1999) Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18:5548–5558

    Article  CAS  PubMed  Google Scholar 

  • Klucis E, Polya GM (1987) Calcium-independent activation of two plant leaf calcium-regulated protein kinases by fatty acids. Biochem Biophys Res Commun 147:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Kostyal DA, Hickey VL, Noti JD, Sussman GL, Beezhold DH (1998) Cloning and characterization of a latex allergen (Hev b 7): homology to patatin, a plant PLA2. Clin Exp Immunol 112:355–362

    Article  CAS  PubMed  Google Scholar 

  • La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz S (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    Google Scholar 

  • Laxalt AM, Munnik T (2002) Phospholipid signaling in plant defence. Curr Opin Plant Biol 5:332–338

    Article  CAS  PubMed  Google Scholar 

  • Lee S-S, Kawakita K, Tsuge T, Doke N (1992) Stimulation of phospholipase A2 in strawberry cells treated with AF-toxin 1 produced by Alternaria alternata strawberry phenotype. Physiol Mol Plant Pathol 41:283–294

    Article  CAS  Google Scholar 

  • Lee Y, Lee HJ, Crain RC, Lee A, Korn SJ (1994) Polyansaturated fatty acids modulate stomatal aperture and two distinct K+ channel currents in guard cells. Cell Signal 6:181–186

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Suh S, Kim S, Crain RC, Kwak JM, Nam H-G, Lee Y (1997) Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J 12:547–556

    Article  CAS  Google Scholar 

  • Lee HY, Bahn SC, Kang Y-M, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15:1990–2002

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Bahn SC, Shin JS, Hwang I, Back K, Doelling JH, Ryu SB (2005) Multiple forms of secretory phospholipase A2 in plants. Progr Lip Res 44:52–67

    Article  CAS  Google Scholar 

  • Lin L-L, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1992) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72:269–278

    Article  Google Scholar 

  • Lio YC, Dennis EA (1998) Interfacial activation, lysophospholipase and transacylase activity of groupVI Ca2+-independent phospholipase A2. Biochim Biophys Acta 1392:320–332

    CAS  PubMed  Google Scholar 

  • Lucantoni A, Polya GM (1987) Activation of wheat embryo Ca2+-regulated protein kinase by unsaturated fatty acids in the presence and absence of calcium. FEBS Lett 221:33–36

    Article  CAS  Google Scholar 

  • Mansfeld J, Ulbrich-Hofmann R (2007) Secretory phospholipase A2-alpha from Arabidopsis thaliana: functional parameters and substrate preference. Chem Phys Lipids 150:156–166

    Article  CAS  PubMed  Google Scholar 

  • Mansfeld J, Gebauer S, Dathe K, Ulbrich-Hofmann R (2006) Secretory phospholipase A2 from Arabidopsis thaliana: insights into the three-dimensional structure and the amino acids involved in catalysis. Biochemistry 45:5687–5694

    Article  CAS  PubMed  Google Scholar 

  • Martiny-Baron G, Scherer GFE (1988) A plant protein kinase and plant microsomal H+ transport are stimulated by the ether lipid platelet-activating factor. Plant Cell Rep 7:579–582

    Article  CAS  Google Scholar 

  • Martiny-Baron G, Scherer GFE (1989) Phospholipid-stimulated protein kinase in plants. J Biol Chem 264:18052–18059

    CAS  PubMed  Google Scholar 

  • Martiny-Baron G, Hecker D, Manolson MF, Poole RJ, Scherer GFE (1992) Proton transport and phosphorylation of tonoplast polypeptides from zucchini are stimulated by the phospholipid platelet-activating factor. Plant Physiol 99:1635–1641

    Article  CAS  PubMed  Google Scholar 

  • Matos AR, d’Arcy-Lameta A, França M, Pêtres S, Edelman L, Kader JC, Zuily-Fodil Y, Pham-Ti AT (2001) A novel patatin-like gene stimulated by drought stress encodes a galactolipid hydrolase. FEBS Lett 491:188–192

    Article  CAS  PubMed  Google Scholar 

  • Misra UK, Pizzo SV (2002) Regulation of cytosolic phospholipase A2 activity in macrophages stimulated with receptor-recognized forms of alpha 2-macroglobulin: role in mitogenesis and cell proliferation. J Biol Chem 277:4069–4078

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Shimbara S, Kambe T, Kuwata H, Winstead MV, Tischfield JA, Kudo I (1998) The functions of five distinct mammalian phospholipase A2s in regulating arachidonic acid release. Type IIA and Type V secretory phospholipase A2s are functionally redundant and act in concert with cytosolic phospholipase A2. J Biol Chem 273:14411–14423

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Brewer KA, Exton JH (1993) Activation of the zeta-isoform of protein kinase C by phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem 268:13–16

    CAS  PubMed  Google Scholar 

  • Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49:339–348

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Ishida J, Nakashima M, Kamiya A, Enju A, Sakurai T, Satoh M, Kobayashi M, Tosa Y, Park P, Shinozaki K (2003) The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Alternaria brassicicola attack. Plant Cell Physiol 44:377–387

    Article  CAS  PubMed  Google Scholar 

  • Narvaez-Vasquez J, Florin-Christensen J, Ryan CA (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260

    Article  CAS  PubMed  Google Scholar 

  • Nickel R, Schütte M, Hecker D, Scherer GFE (1991) The phospholipid platelet-activating factor stimulates proton extrusion in cultured soybean cells and protein phosphorylation and ATPase activity in plasma membranes. J Plant Physiol 139:205–211

    CAS  Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    CAS  PubMed  Google Scholar 

  • Noiriel A, Benveniste P, Banas A, Stymne S, Bouvier-Navé P (2004) Expression in yeast of a novel phospholipase A1 cDNA from Arabidopsis thaliana. Eur J Biochem 271:3752–3764

    Article  CAS  PubMed  Google Scholar 

  • Oishi K, Raynor RL, Charp PA, Kou JF (1988) Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J Biol Chem 263:6865–6871

    CAS  PubMed  Google Scholar 

  • Palmgren MG (1991) Regulation of plant plasma membrane H+-ATPase activity. Physiol Plant 83:314–323

    Article  CAS  Google Scholar 

  • Palmgren MG, Sommarin M (1989) Lysophosphatidylcholine stimulates ATP-dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol 90:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Sommarin M, Ulskov P, Joergensen PL (1988) Modulation of plant plasma membrane H+-ATPase from oat roots by lysophosphatidylcholine, free fatty acids and phospholipase A2. Physiol Plant 74:11–19

    Article  CAS  Google Scholar 

  • Paul R, Holk A, Scherer GFE (1998) Fatty acids and lysophospholipids as potential second messengers in auxin action. Rapid activation of phospholipase A2 activity by auxin in suspension-cultured parsley and soybean cells. Plant J 16:601–611

    Article  CAS  Google Scholar 

  • Polya GM, Minichiello J, Nott R, Klucis E, Keane PJ (1990) Differential inhibition of plant calcium-dependent protein kinases by long-chain fatty acids and other amphiphiles. Plant Sci 71:45–54

    Article  CAS  Google Scholar 

  • Qin Z-H, de Carvalho MS, Leslie CC (1993) Regulation of phospholipase A2 activation by phosphorylation in mouse peritoneal macrophages. J Biol Chem 268:24506–24513

    CAS  PubMed  Google Scholar 

  • Qui Z-H, Leslie CC (1994) Protein kinase C-dependent and -independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J Biol Chem 269:19480–19487

    Google Scholar 

  • Racusen D (1984) Lipid acyl hydrolase of patatin. Can J Bot 62:1640–1644

    Article  CAS  Google Scholar 

  • Rietz S, Holk A, Scherer GFE (2004) Expression of the patatin-related phospholipase A-gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and by deficiency of iron and phosphate. Planta 219:743–753

    Article  CAS  PubMed  Google Scholar 

  • Roos W, Dordschbal B, Steighardt J, Hieke M, Weiss D, Saalbach G (1999) A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica. Biochim Biophys Acta 1448:390–402

    Article  CAS  PubMed  Google Scholar 

  • Rosahl S, Schmidt R, Schell J, Willmitzer L (1986) Isolation and characterization of a gene from Solanum tuberosum encoding patatin, the major storage protein of potato tubers. Mol Gen Genet 203:214–220

    Article  CAS  Google Scholar 

  • Roy S, Pouénat M-L, Caumont C, Cariven C, Prévost M-C, Esquerré-Tugayé M-T (1995) Phospholipase activity and phospholipid patterns in tobacco cells treated with fungal elicitor. Plant Sci 107:17–25

    Article  CAS  Google Scholar 

  • Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S (2006) Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil 283:175–185

    Article  CAS  Google Scholar 

  • Rydel TJ, Williams JM, Krieger E, Moshiri F, Stallings WC, Brown SM, Pershing JC, Purcell JP, Alibhai MF (2003) The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a ser-asp catalytic dyad. Biochemistry 42:6696–6708

    Article  CAS  PubMed  Google Scholar 

  • Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9:229–235

    Article  CAS  PubMed  Google Scholar 

  • Ryu SB, Karlsson BH, Özgen M, Palta JP (1997) Inhibition of phospholipase D by lysophosphatidylethanolamine, a lipid-derived senescence retardant. Proc Natl Acad Sci USA 94:12717–12721

    Article  CAS  PubMed  Google Scholar 

  • Ryu SB, Lee HY, Doelling JH, Palta JP (2005) Characterization of a cDNA encoding Arabidopsis secretory phospholipase A2-alpha, an enzyme that generates bioactive lysophospholipids and free fatty acids. Biochim Biophys Acta 1736:144–151

    CAS  PubMed  Google Scholar 

  • Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, Klein PE, Klein RR, Pratt LH, Cordonnier-Pratt MM, Mullet JE (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138:352–368

    Article  CAS  PubMed  Google Scholar 

  • Scherer GFE (1992) Stimulation of growth and phospholipase A2 by the peptides mastoparan and melittin and by the auxin 2, 4-dichlorophenoxyacetic acid. Plant Growth Regul 11:153–157

    Article  CAS  Google Scholar 

  • Scherer GFE (1995) Activation of phospholipase A by auxin and mastoparan in hypocotyl segments from zucchini and sunflower. J Plant Physiol 145:483–490

    CAS  Google Scholar 

  • Scherer GFE (1996) Phospholipid signaling and lipid-derived second messengers in plants. Plant Growth Regul 18:125–133

    Article  CAS  Google Scholar 

  • Scherer GFE (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol Biol 49:357–372

    Article  CAS  PubMed  Google Scholar 

  • Scherer GFE, André B (1989) A rapid response to a plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem Biophys Res Commun 163:111–117

    Article  CAS  PubMed  Google Scholar 

  • Scherer GFE, André B (1993) Stimulation of phospholipase A2 by auxin in microsomes from suspension-cultured soybean cells is receptor-mediated and influenced by nucleotides. Planta 191:515–523

    Article  CAS  Google Scholar 

  • Scherer GFE, Arnold B (1997) Auxin-induced growth is inhibited by phospholipase A2 inhibitors. Implications for auxin-induced signal transduction. Planta 202:462–469

    Article  CAS  Google Scholar 

  • Scherer GFE, Martiny-Baron G, Stoffel B (1988) A new set of regulatory molecules in plants: a plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton-translocating ATPase in membrane vesicles. Planta 175:241–253

    Article  CAS  Google Scholar 

  • Scherer GFE, Führ A, Schütte M (1993a) Activation of membrane-associated protein kinase by lipids, its substrates, and its function in signal transduction. In Battey NH, Dickinson HG, Hetherington AM (eds) Society for Experimental Biology Seminar Series 53: Post-translational modifications in plants, vol 53. Cambridge University Press, Cambridge, UK, pp. 109–121

    Google Scholar 

  • Scherer GFE, Hecker D, Müller J (1993b) Ca2+ ions and lysophospholipids activate phosphorylation of different proteins in plasma membranes and tonoplast purified by free-flow electrophoresis. J Plant Physiol 142:432–437

    Google Scholar 

  • Scherer GFE, Paul RU, Holk A (2000) Phospholipase A2 in auxin and elicitor signal transduction in cultured parsley cells (Petrosilenium crispum L.). Plant Growth Regul 32:123–128

    Article  CAS  Google Scholar 

  • Scherer GF, Paul RU, Holk A, Martinec J (2002) Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem Biophys Res Commun 293:766–770

    Article  CAS  PubMed  Google Scholar 

  • Scherer GF, Zahn M, Callis J, Jones AM (2007) A role for phospholipase A in auxin-regulated gene expression. FEBS Lett 581:4205–4211

    Article  CAS  PubMed  Google Scholar 

  • Schieviella AR, Regier MK, Smith WL, Lin L-L (1995) Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem 270:30747–30754

    Google Scholar 

  • Schweizer P, Felix G, Buchala A, Müller C, Mètraux J-P (1996) Perception of free cutin monomers by plant cells. Plant J 10:331–341

    Article  CAS  Google Scholar 

  • Senda K, Yoshioka H, Doke N, Kawakita K (1996) A cytosolic phospholipase A2 from potato tissues appears to be patatin. Plant Cell Physiol 37:347–353

    CAS  PubMed  Google Scholar 

  • Senda K, Doke N, Kawakita K (1998) Effect of mastoparan on phospholipase A2 activity in potato tubers treated with fungal elicitor. Plant Cell Physiol 39:1080–1086

    CAS  Google Scholar 

  • Seo YS, Kim EY, Mang HG, Kim WT (2008) Heterologous expression and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog. Plant J 53:895–908

    Article  CAS  PubMed  Google Scholar 

  • Sharp JD, White DL, Chiou XG, Goodson T, Gamboa GC, McClure D, Burgett S, Hoskins J, Skatrud PL, Sportsman JR, Becker GW, Kang LH, Roberts EF, Kramer RM (1991) Molecular cloning and expression of human Ca2+-sensitive cytosolic phospholipase A2. J Biol Chem 266:14850–14853

    CAS  PubMed  Google Scholar 

  • Sheridan AM, Sapirstein A, Lemieux N, Martin BD, Kim DK, Bonventre JV (2001) Nuclear translocation of cytosolic phospholipase A2 is induced by ATP depletion. J Biol Chem 276:29899–29905

    Article  CAS  PubMed  Google Scholar 

  • Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19

    CAS  PubMed  Google Scholar 

  • Snijder HJ, Dijkstra BW (2000) Bacterial phospholipase A: Structure and function of an integral membrane phospholipase. Biochim Biophys Acta 1488:91–101

    CAS  PubMed  Google Scholar 

  • Sowka S, Wagner S, Krebitz M, Arija-Mad-Arif S, Yusof F, Kinaciyan T, Brehler R, Scheiner O, Breitenender H (1998) cDNA cloning of the 43-kDa latex allergen Hev b7 with sequence similarity to patatins and its expression in the yeast Pichia pastoris. Eur J Biochem 255:213–219

    Article  CAS  PubMed  Google Scholar 

  • Ståhl U, Ek B, Stymme S (1998) Purification and characterization of low-molecular-weight phospholipase A2 from developing seeds of elm. Plant Physiol 117:197–205

    Article  PubMed  Google Scholar 

  • Ståhl U, Lee M, Sjödahl S, Archer D, Cellini F, Ek B, Iannacone R, MacKenzie D, Semeraro L, Tramontano E, Stymme S (1999) Plant low-molecular-weight phospholipase A2S (PLA2s) are structurally related to the animal secretory PLA2s and are present as a family of isoforms in rice (Oryza sativa). Plant Mol Biol 41:481–490

    Article  PubMed  Google Scholar 

  • Suh S, Park J, Lee Y (1998) Possible involvement of phospholipase A2 in light signal transduction of guard cells of Commelina communis. Physiol Plant 104:306–310

    Article  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Kriz RW, Wolfman N, Shaffer M, Seehra J, Jones SS (1997) A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem 272:8567–8575

    Article  CAS  PubMed  Google Scholar 

  • Tavernier E, Pugin A (1995) Phospholipase activities associated with the tonoplast from Acer pseudoplatanus cells: identification of a phospholipase A1 activity. Biochim Biophys Acta 1233:118–122

    Article  PubMed  Google Scholar 

  • Ueno K, Kinoshita T, Inoue S, Emi T, Shimazaki K (2005) Biochemical characterization of plasma membrane H + -ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol 46:955–963

    Article  CAS  PubMed  Google Scholar 

  • van der Hoeven PC, Siderius M, Korthout HA, Drabkin AV, de Boer AH (1996) A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14–3-3 receptor. Plant Physiol 111:857–865

    Article  PubMed  Google Scholar 

  • van Leeuwen W, Okrész L, Bögre L, Munnik T (2004) Learning the lipid language of plant signaling. Trends Plant Sci 9:378–384

    Article  PubMed  CAS  Google Scholar 

  • Viehweger K, Dordschbal B, Roos W (2002) Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxes. Plant Cell 14:1509–1525

    Article  CAS  PubMed  Google Scholar 

  • Viehweger K, Schwartze W, Schumann B, Lein W, Roos W (2006) The Galpha protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. Plant Cell 18:1510–1523

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127:1102–1112

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durne J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 4:177–183

    Article  Google Scholar 

  • Winstead MV, Balsinde J, Dennis EA (2000) Calcium-independent phospholipase A2: structure and function. Biochim Biophys Acta 1488:28–39

    CAS  PubMed  Google Scholar 

  • Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM, Pickersgill RW (2002) Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J 21:2877–2885

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X (2007) AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Park D, Lee Y (1996) In vivo evidence for the involvement of phospholipase A and protein kinase in the signal transduction pathway for auxin-induced corn coleoptile elongation. Physiol Plant 96:359–368

    Article  CAS  Google Scholar 

  • Zahn M, Wymalasekara R, Göbel C, Feußner I, Holk A, Scherer GFE (2005) Expression of Arabidopis phospholipase A genes in Petunia x hybrida. Increased hypersensitive-like response after infection with Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 demonstrates a function for phospholipase A in pathogen defence. Physiol Mol Plant Pathol 67:2–14

    Article  CAS  Google Scholar 

  • Zhang W, Eang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate-stimulated phospholipase D, PLDγ and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work of the author was supported by the Deutsche Forschungsgemeinschaft, Bundesministerium für Forschung und Entwicklung, and VW Vorab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther F. E. Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherer, G.F.E. (2010). Phospholipase A in Plant Signal Transduction. In: Munnik, T. (eds) Lipid Signaling in Plants. Plant Cell Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03873-0_1

Download citation

Publish with us

Policies and ethics