Controllability in Temporal Conceptual Workflow Schemata

  • Carlo Combi
  • Roberto Posenato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5701)


Workflow technology has emerged as one of the leading technologies in modelling, redesigning, and executing business processes. Currently available workflow management systems (WfMS) and research prototypes offer a very limited support for the definition, detection, and management of temporal constraints over business processes. In this paper, we propose a new advanced workflow conceptual model for expressing time constraints in business processes and, in particular, we introduce and discuss the concept of controllability for workflow schemata and its evaluation at process design time. Controllability refers to the capability of executing a workflow for any possible duration of tasks. Since in several situations durations of tasks cannot be decided by WfMSs, even tough the minimum and the maximum durations for each task are known, checking controllability is stronger than verifying the consistency of the workflow temporal constraints.


Business Process Temporal Constraint Relative Constraint Task Duration Business Process Modelling Notation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Workflow Management Coalition, Hollingsworth, D.: The workflow reference model (1995),
  2. 2.
    Object Management Group (OMG): Business process definition metamodel (bpdm), beta 1 (2007),
  3. 3.
    Eder, J., Panagos, E., Rabinovich, M.I.: Time constraints in workflow systems. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 286–300. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Eder, J., Panagos, E.: Managing time in workflow systems. In: Workflow Handbook 2001. Workflow Management Coalition (WfMC), pp. 109–132 (2000)Google Scholar
  5. 5.
    Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in workflow systems. Distributed and Parallel Databases 11, 269–306 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Marjanovic, O., Orlowska, M.E.: On modeling and verification of temporal constraints in production workflows. Knowl. Inf. Syst. 1, 157–192 (1999)CrossRefGoogle Scholar
  7. 7.
    Combi, C., Gozzi, M., Juárez, J.M., Oliboni, B., Pozzi, G.: Conceptual modeling of temporal clinical workflows. In: TIME, pp. 70–81. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  8. 8.
    Ede, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with conditional execution paths. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 243–253. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11, 23–45 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Morris, P.H., Muscettola, N.: Temporal dynamic controllability revisited. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 1193–1198. AAAI Press / The MIT Press (2005)Google Scholar
  11. 11.
    Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Conceptual modelling of workflows. In: Papazoglou, M.P. (ed.) ER 1995 and OOER 1995. LNCS, vol. 1021, pp. 341–354. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Mangan, P.J., Sadiq, S.W.: A constraint specification approach to building flexible workflows. Journal of Research and Practice in Information Technology 35, 21–39 (2003)Google Scholar
  13. 13.
    van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W(E.): An alternative way to analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Goralwalla, I.A., Leontiev, Y., Özsu, M.T., Szafron, D., Combi, C.: Temporal granularity: Completing the puzzle. J. Intell. Inf. Syst. 16, 41–63 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Antman, E.M., et al.: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction. Circulation 110, 588–636 (2004)CrossRefGoogle Scholar
  16. 16.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49, 61–95 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Morris, P.: A structural characterization of temporal dynamic controllability. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 375–389. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and implementation of the YAWL system. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 142–159. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carlo Combi
    • 1
  • Roberto Posenato
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di VeronaVeronaItaly

Personalised recommendations