The Triconnected Abstraction of Process Models

  • Artem Polyvyanyy
  • Sergey Smirnov
  • Mathias Weske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5701)


Companies use business process models to represent their working procedures in order to deploy services to markets, to analyze them, and to improve upon them. Competitive markets necessitate complex procedures, which lead to large process specifications with sophisticated structures. Real world process models can often incorporate hundreds of modeling constructs. While a large degree of detail complicates the comprehension of the processes, it is essential to many analysis tasks. This paper presents a technique to abstract, i.e., to simplify process models. Given a detailed model, we introduce abstraction rules which generalize process fragments in order to bring the model to a higher abstraction level. The approach is suited for the abstraction of large process specifications in order to aid model comprehension as well as decomposing problems of process model analysis. The work is based on process structure trees that have recently been introduced to the field of business process management.


Boundary Node Process Component Business Process Management Simple Component Process Entry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    OMG: Business Process Modeling Notation, Version 1.2 (January 2009)Google Scholar
  2. 2.
    Keller, G., Nüttgens, M., Scheer, A.: Semantische Prozessmodellierung auf der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, University of Saarland (1992)Google Scholar
  3. 3.
    Petri, C.: Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathematik, Bonn, Germany (1962)Google Scholar
  4. 4.
    Tarjan, R.E., Valdes, J.: Prime Subprogram Parsing of a Program. In: Proceedings of the 7th Symposium on Principles of Programming Languages (POPL), pp. 95–105. ACM, New York (1980)Google Scholar
  5. 5.
    Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In: Proceedings of the 6th International Conference on Business Process Management (BPM), Milan, Italy, September 2008, pp. 100–115 (2008)Google Scholar
  6. 6.
    Polyvyanyy, A., Smirnov, S., Weske, M.: Reducing Complexity of Large EPCs. In: Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten (MobIS: EPK), Saarbruecken, Germany (November 2008)Google Scholar
  7. 7.
    Polyvyanyy, A., Smirnov, S., Weske, M.: Process Model Abstraction: A Slider Approach. In: Proceedings of the 12th IEEE International Enterprise Distributed Object Computing Conference (EDOC), Munich, Germany (September 2008)Google Scholar
  8. 8.
    Berthelot, G.: Checking Properties of Nets using Transformation. In: Advances in Petri Nets 1985, London, UK, pp. 19–40. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  9. 9.
    Berthelot, G.: Transformations and Decompositions of Nets. In: Advances in Petri nets 1986, London, UK, pp. 359–376. Springer, Heidelberg (1987)Google Scholar
  10. 10.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  12. 12.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Aalst, W.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) Application and Theory of Petri Nets, Berlin, Germany, pp. 407–426. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Battista, G.D., Tamassia, R.: Incremental Planarity Testing. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, FOCS (1989)Google Scholar
  15. 15.
    Battista, G.D., Tamassia, R.: On-Line Maintenance of Triconnected Components with SPQR-Trees. Algorithmica 15(4), 302–318 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hopcroft, J.E., Tarjan, R.E.: Dividing a Graph into Triconnected Components. SIAM Journal on Computing 2(3), 135–158 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fussell, D., Ramachandran, V., Thurimella, R.: Finding Triconnected Components by Local Replacement. SIAM Journal on Computing 22(3), 587–616 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In: Proceedings of the 8th International Symposium on Graph Drawing (GD), London, UK, pp. 77–90. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 268–284. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Artem Polyvyanyy
    • 1
  • Sergey Smirnov
    • 1
  • Mathias Weske
    • 1
  1. 1.Business Process Technology GroupHasso Plattner Institute at the University of PotsdamPotsdamGermany

Personalised recommendations