Quantitative Pathway Logic for Computational Biology

  • Michele Baggi
  • Demis Ballis
  • Moreno Falaschi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5688)


This paper presents an extension of Pathway Logic, called Quantitative Pathway Logic (QPL), which allows one to reason about quantitative aspects of biological processes, such as element concentrations and reactions kinetics. Besides, it supports the modeling of inhibitors, that is, chemicals which may block a given reaction whenever their concentration exceeds a certain threshold. QPL models can be specified and directly simulated using rewriting logic or can be translated into Discrete Functional Petri Nets (DFPN) which are a subclass of Hybrid Functional Petri Nets in which only discrete transitions are allowed. Under some constraints over the anonymous variables appearing in the QPL models, the transformation between the two computational models is shown to preserve computations. By using the DFPN representation our models can be graphically visualized and simulated by means of well known tools (e.g. Cell Illustrator); moreover standard Petri net analyses (e.g. topological analysis, forward/backward reachability, etc.) may be performed on the net model. An executable framework for QPL and for the translation of QPL models into DFPNs has been implemented using the rewriting-based language Maude. We have tested this system on several examples.


Cell State Linear Temporal Logic Discrete Transition Forward Simulation Input Connector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abate, A., Bai, Y., Sznajder, N., Talcott, C., Tiwari, A.: Quantitative and Probabilistic Modeling in Pathway Logic. In: 7th IEEE International Conference on Bioinformatics and BioEngineering, pp. 922–929. IEEE Xplore, Los Alamitos (2007)Google Scholar
  2. 2.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs with well quasi-ordered domains. Information and Computation 160(1-2), 109–127 (2000)CrossRefGoogle Scholar
  3. 3.
    Baggi, M., Ballis, D., Falaschi, M.: Applications to Systems Biology of Quantitative Pathway Logic. Technical report (2009),
  4. 4.
    Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. Journal of Discrete Algorithms 6(2), 165–177 (2008)CrossRefGoogle Scholar
  5. 5.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude LTL model checker and its implementation. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 230–234. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Eyre, T.A., et al.: The HUGO Gene Nomenclature Database, 2006 updates. Nucleic Acids Research 34(Database issue), 319–321 (2006)CrossRefGoogle Scholar
  8. 8.
    Gauges, R., Rost, U., Sahle, S., Wegner, K.: A model diagram layout extension for SBML. Bioinformatics 22(15), 1879–1885 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    Genrich, H.J., Küffne, R., Voss, K.: Executable Petri net models for the analysis of metabolic pathways. International Journal on Software Tools for Technology Transfer 3(4), 394–404 (2001)Google Scholar
  10. 10.
    Gilbert, D., Heiner, M., Lehrack, S.: A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F.: The CellML Model Repository. Bioinformatics 24(18), 1367–2123 (2008)CrossRefGoogle Scholar
  12. 12.
    Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: A versatile petri net based architecture for modeling and simulation of complex biological processes. Genome Informatics 15(1), 180–197 (2004)PubMedGoogle Scholar
  13. 13.
    Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic Object Net: A platform for modelling and simulating biopathways. Applied Bioinformatics 2, 181–184 (2004)Google Scholar
  14. 14.
    Martí-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theoretical Computer Science 285(2), 121–154 (2002)CrossRefGoogle Scholar
  15. 15.
    Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Upper Saddle River (1967)Google Scholar
  16. 16.
    Murata, T.: Petri Nets: Properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  17. 17.
    Nagasaki, M., Saito, A., Li, C., Jeong, E., Miyano, S.: Systematic reconstruction of TRANSPATH data into Cell System Markup Language. BMC Systems Biology 2(1) (2008)Google Scholar
  18. 18.
    Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in rewriting logic. Theoretical Computer Science 285(2), 359–405 (2002)CrossRefGoogle Scholar
  19. 19.
    Reinhardt, K.: Reachability in Petri Nets with Inhibitor Arcs. Electronic Notes in Theoretical Computer Science 223, 239–264 (2008)CrossRefGoogle Scholar
  20. 20.
    Talcott, C.: Pathway logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Talcott, C., Dill, D.L.: Multiple representations of biological processes. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 221–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    The_uniprot_consortium. The Universal Protein Resource (UniProt). Nucleic Acids Research 35(Database issue) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michele Baggi
    • 1
  • Demis Ballis
    • 2
  • Moreno Falaschi
    • 1
  1. 1.Dip. di Scienze Matematiche e InformaticheSienaItaly
  2. 2.Dip. Matematica e InformaticaUdineItaly

Personalised recommendations