Advertisement

Qualitative Transition Systems for the Abstraction and Comparison of Transient Behavior in Parametrized Dynamic Models

  • Hayssam Soueidan
  • Grégoire Sutre
  • Macha Nikolski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5688)

Abstract

Quantitative models in Systems Biology depend on a large number of free parameters, whose values completely determine behavior of models. These parameters are often estimated by fitting the system to observed experimental measurements and data. The response of a model to parameter variation defines qualitative changes of the system’s behavior. The influence of a given parameter can be estimated by varying it in a certain range. Some of these ranges produce similar system dynamics, making it possible to define general trends for trajectories of the system (e.g. oscillating behavior) in such parameter ranges. Such trends can be seen as a qualitative description of the system’s dynamics within a parameter range. In this work, we define an automata-based formalism to formally describe the qualitative behavior of systems’ dynamics. Qualitative behaviors are represented by finite transition systems whose states contain predicate valuation and whose transitions are labeled by probabilistic delays. Biochemical system’ dynamics are automatically abstracted in terms of these qualitative transition systems by a random sampling of trajectories. Furthermore, we use graph theoretic tools to compare the resulting qualitative behaviors and to estimate those parameter ranges that yield similar behaviors. We validate this approach on published biochemical models and show that it enables rapid exploration of models’ behavior, that is estimation of parameter ranges with a given behavior of interest and identification of some bifurcation points.

Keywords

Time Series Periodic Orbit Sojourn Time Qualitative Behavior Rank Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chesneaux, J.: The equality relations in scientific computing. Numerical Algorithms (January 1994)Google Scholar
  2. 2.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., et al.: BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research 34(Database Issue), D689 (2006)CrossRefGoogle Scholar
  5. 5.
    Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRefPubMedGoogle Scholar
  6. 6.
    Shapiro, B., Hucka, M., Finney, A., Doyle, J.: Mathsbml: a package for manipulating sbml-based biological models. Bioinformatics 20(16), 2829–2831 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tyson, J.: Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings of the National Academy of Sciences 88(16), 7328–7332 (1991)CrossRefGoogle Scholar
  8. 8.
    Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267(6), 1583–1588 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Kim, D., Rath, O., Kolch, W., Cho, K.: A hidden oncogenic positive feedback loop caused by crosstalk between wnt and erk pathways. Oncogene 26(31), 4571–4579 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hayssam Soueidan
    • 1
  • Grégoire Sutre
    • 2
  • Macha Nikolski
    • 2
  1. 1.LaBRI/ENSEiRBUniversité Bordeaux ITalenceFrance
  2. 2.CNRS/LaBRIUniversité Bordeaux ITalenceFrance

Personalised recommendations