Advertisement

The Equivalence between Biology and Computation

  • John K. Heath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5688)

Abstract

A major challenge in computational systems biology is the articulation of a biological process in a form which can be understood by the biologist yet is amenable to computational execution. Process calculi have proved to especially powerful computational tools for modelling and reasoning about biological processes and we have previously described, and implemented, a Narrative approach to describing biological models which is a biologically intuitive high level language that can be translated into executable process calculus programs. Here we discuss an extension to the narrative approach which attempts to directly link biological data with Narrative primitives by suggesting an equivalence relationship between a string (the amino acid sequence) and a process. We outline future challenges in applying this approach more generally.

Keywords

Biological Data Operational Semantic Live Cell Imaging Process Algebra Narrative Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Priami, C.: Algorithmic Systems Biology An Opportunity for Computer Science. Communications of the ACM 52, 80–88 (2009)CrossRefGoogle Scholar
  2. 2.
    Kwiatkowska, M.Z., Heath, J.K.: Biological pathways as communicating computer systems. J. Cell Sci. (in press, 2009)Google Scholar
  3. 3.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239–1249 (2007)CrossRefPubMedGoogle Scholar
  4. 4.
    Hunt, C.A., Ropella, G.E., Park, S., Engeleberg, J.: Dichotomies between computational and mathematical models. Nature Biotechnology 26, 737–738 (2008)CrossRefPubMedGoogle Scholar
  5. 5.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Pts 1 and 2. Information and computation 100(11), 1–40 (1992) (print)CrossRefGoogle Scholar
  6. 6.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific Symposium Biocomput., pp. 459–470 (2001)Google Scholar
  7. 7.
    Matsuoka, Y., Ghosh, S., Kitano, H.: Consistent design schematics for biological systems: standardization of representation in biological engineering. J. R Soc. Interface (June 3, 2009)Google Scholar
  8. 8.
    Guerriero, M.L., Heath, J.K., Priami, C.: An automated translation from a narrative language for biological modelling into process algebra. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 136–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Guerriero, M.L., Dudka, A., Underhill-Day, N., Heath, J.K., Priami, C.: Narrative-based computational modelling of the Gp130/JAK/STAT signalling pathway. BMC Syst. Biol. 3, 40 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jain, E., Bairoch, A., Duvaud, S., Phan, I., Redaschi, N., Suzek, B.E., Martin, M.J., McGarvey, P., Gasteiger, E.: Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10, 136 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., Sraphin, B.: The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24(3), 218–229 (2001)CrossRefPubMedGoogle Scholar
  12. 12.
    Chung, A.S., Chin, Y.E.: Antibody array platform to monitor protein tyrosine phosphorylation in mammalian cells. Methods Mol. Biol. 527, 247–255 (2009)CrossRefPubMedGoogle Scholar
  13. 13.
    Albeck, J.G., MacBeath, G., White, F.M., Sorger, P.K., Lauffenburger, D.A., Gaudet, S.: Collecting and organizing systematic sets of protein data. Nat. Rev. Mol. Cell Biol. 7(11), 803–812 (2006)CrossRefPubMedGoogle Scholar
  14. 14.
    Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., von Mering, C.: STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37(Database issue), D412–D416 (2009)CrossRefGoogle Scholar
  15. 15.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science, 141–167 (2004)Google Scholar
  16. 16.
    Heath, J.K., Khan, I., van Bakel, S., Vigliotti, M.G.: Modelling intracellular fate of FGF receptors with BioAmbients. In: Proceedings of Int. Workshop Quantitative Aspects of Programming Languages (QAPL 2008). ENTCS, vol. 220, pp. 181–197 (2008)Google Scholar
  17. 17.
    Sabouri-Ghomi, M., Wu, Y., Hahn, K., Danuser, G.: Visualizing and quantifying adhesive signals. Curr. Opin. Cell Biol. 20(5), 541–550 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Lu, A., Tebar, F., Alvarez-Moya, B., Lpez-Alcal, C., Calvo, M., Enrich, C., Agell, N., Nakamura, T., Matsuda, M., Bachs, O.: A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. J. Cell Biol. 184(6), 863–879 (2009)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • John K. Heath
    • 1
  1. 1.School of BiosciencesUniversity of BirminghamUK

Personalised recommendations