Advertisement

Dynamic Compartments in the Imperative π-Calculus

  • Mathias John
  • Cédric Lhoussaine
  • Joachim Niehren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5688)

Abstract

Dynamic compartments with mutable configurations and variable volumes are of basic interest for the stochastic modeling of biochemistry in cells. We propose a new language to express dynamic compartments that we call the imperative π -calculus. It is obtained from the attributed π -calculus by adding imperative assignment operations to a global store. Previous approaches to dynamic compartments are improved in flexibility or efficiency. This is illustrated by an appropriate model of osmosis and a correct encoding of bioambBioAmbients.

Keywords

Operational Semantic Parallel Composition Communication Step Lambda Calculus Communication Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brodo, L., Degano, P., Priami, C.: A stochastic semantics for bioambients. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 22–34. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: An Extension of the Process Algebra PEPA for Biochemical Networks. ENTCS 194(3), 103–117 (2008)Google Scholar
  5. 5.
    Ciocchetta, F., Guerriero, M.L.: Modelling Biological Compartments in Bio-PEPA. ENTCS 227, 77–95 (2009)Google Scholar
  6. 6.
    Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1), 69–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Dematté, L., Priami, C., Romanel, A.: Modelling and Simulation of Biological Processes in BlenX. SIGMETRICS Perf. Evaluation Review 35(4), 32–39 (2008)CrossRefGoogle Scholar
  8. 8.
    Elf, J., Ehrenberg, M.: Spontaneous Separation of Bi-Stable Biochemical Systems into Spatial Domains of Opposite Phases. IEEE Proceedings Systems Biology 1(2), 230–236 (2004)CrossRefGoogle Scholar
  9. 9.
    Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  10. 10.
    Himmelspach, J., Uhrmacher, A.M.: Plug’n Simulate. In: ANSS 2007, IEEE Proceedings, pp. 137–143 (2007)Google Scholar
  11. 11.
    John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M.: The attributed pi calculus. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 83–102. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. ENTCS 218, 73–96 (2008)Google Scholar
  13. 13.
    Kuttler, C., Lhoussaine, C., Niehren, J.: A Stochastic Pi-Calculus for Concurrent Objects. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 232–246. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computation 204(1), 60–122 (2006)CrossRefGoogle Scholar
  15. 15.
    Phillips, A.: An Abstract Machine for the Stochastic Bioambient Calculus. ENTCS 227, 143–159 (2009)Google Scholar
  16. 16.
    Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a Stochastic Name-Passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters 80, 25–31 (2001)CrossRefGoogle Scholar
  18. 18.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. TCS 325(1), 141–167 (2004)CrossRefGoogle Scholar
  19. 19.
    Regev, A., Shapiro, E.: Cells as Computation. Nature 419, 343 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Versari, C.: A Core Calculus for a Comparative Analysis of Bio-Inspired Calculi. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 411–425. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Versari, C., Busi, N.: Stochastic Biological Modelling in Presence of Multiple Compartments. TCS (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mathias John
    • 1
  • Cédric Lhoussaine
    • 2
    • 4
  • Joachim Niehren
    • 3
    • 4
  1. 1.Computer Science, Modeling and Simulation GroupUniversity of RostockGermany
  2. 2.University of Lille 1France
  3. 3.INRIALille
  4. 4.BioComputingLIFL (CNRS UMR8022) and IRI (CNRS USR3078)France

Personalised recommendations