Improved Parameter Estimation for Completely Observed Ordinary Differential Equations with Application to Biological Systems

  • Peter Gennemark
  • Dag Wedelin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5688)


We consider parameter estimation in ordinary differential equations (ODEs) from completely observed systems, and describe an improved version of our previously reported heuristic algorithm (IET Syst. Biol., 2007). Basically, in that method, estimation based on decomposing the problem to simulation of one ODE, is followed by estimation based on simulation of all ODEs of the system.

The main algorithmic improvement compared to the original version, is that we decompose not only to single ODEs, but also to arbitrary subsets of ODEs, as a complementary intermediate step. The subsets are selected based on an analysis of the interaction between the variables and possible common parameters.

We evaluate our algorithm on a number of well-known hard test problems from the biological literature. The results show that our approach is more accurate and considerably faster compared to other reported methods on these problems. Additionally, we find that the algorithm scales favourably with problem size.


ordinary differential equations parameter estimation decomposition 

Supplementary material

All problems solutions on-line software and supplementary information are available at 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13(11), 2467–2474 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gennemark, P., Wedelin, D.: Efficient algorithms for ordinary differential equation model identification of biological systems. IET Syst. Biol. 1(2), 120–129 (2007)CrossRefPubMedGoogle Scholar
  3. 3.
    Gennemark, P., Wedelin, D.: Benchmarks for identification of ordinary differential equations from time series data. Bioinformatics 25(6), 780–786 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ljung, L., Glad, T.: On global identifiability for arbitrary model parametrizations. Automatica 30(2), 265–276 (1994)CrossRefGoogle Scholar
  5. 5.
    Schittkowski, K.: Numerical data fitting in dynamical systems: a practical introduction with applications and software. Kluwer Academic, Dordrecht (2002)CrossRefGoogle Scholar
  6. 6.
    Polisetty, P.K., Voit, E.O., Gatzke, E.P.: Identification of metabolic system parameters using global optimization methods. Theor. Biol. Med. Model. 3(4) (2006)Google Scholar
  7. 7.
    Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)CrossRefPubMedGoogle Scholar
  8. 8.
    Peifer, M., Timmer, J.: Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting. IET Syst. Biol. 1, 78–88 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    Balsa-Canto, E., Peifer, M., Banga, J.R., Timmer, J., Fleck, C.: Hybrid optimization method with general switching strategy for parameter estimation. BMC Syst. Biol. 2(26) (2008)Google Scholar
  10. 10.
    Englezoz, P., Kalogerakis, N.: Applied parameter estimation for chemical engineers. Marcel Dekker, Inc., New York (2001)Google Scholar
  11. 11.
    Tucker, W., Moulton, V.: Parameter reconstruction for biochemical networks using interval analysis. Reliable computing 12(5), 389–402 (2006)CrossRefGoogle Scholar
  12. 12.
    Rodriguez-Fernandez, M., Mendes, P., Banga, J.R.: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83(2-3), 248–265 (2006a)CrossRefPubMedGoogle Scholar
  13. 13.
    Rodriguez-Fernandez, M., Egea, J.A., Banga, J.R.: Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics 7, 483 (2006b)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tsai, K.Y., Wang, F.S.: Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21(7), 1180–1188 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    Kutalik, Z., Tucker, W., Moulton, V.: S-system parameter estimation for noisy metabolic profiles using newton-flow analysis. IET Syst. Biol. 1, 174–180 (2007)CrossRefPubMedGoogle Scholar
  16. 16.
    Box, G.E.P., Hunter, W.G., MacGregor, J.F., Erjavec, J.: Some problems associated with the analysis of multiresponse data. Technometrics 15, 33–51 (1973)CrossRefGoogle Scholar
  17. 17.
    Savageau, M.A.: Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, Reading (1976)Google Scholar
  18. 18.
    Voit, E.O.: Computational analysis of biochemical systems. A practical guide for biochemists and molecular biologists, pp. 176–184. Cambridge University Press, Cambridge (2000)Google Scholar
  19. 19.
    Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S., Eguchi, Y.: Development of a system for the inference of large scale genetic networks. In: Pac. Symp. Biocomput. 2001, pp. 446–458 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Gennemark
    • 1
    • 2
  • Dag Wedelin
    • 3
  1. 1.University of GöteborgGöteborgSweden
  2. 2.Uppsala UniversityUppsalaSweden
  3. 3.Chalmers University of TechnologyGöteborgSweden

Personalised recommendations