Skip to main content

Approximation of Event Probabilities in Noisy Cellular Processes

  • Conference paper
Computational Methods in Systems Biology (CMSB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5688))

Included in the following conference series:

Abstract

Molecular noise, which arises from the randomness of the discrete events in the cell, significantly influences fundamental biological processes. Discrete -state continuous-time stochastic models (CTMC) can be used to describe such effects, but the calculation of the probabilities of certain events is computationally expensive.

We present a comparison of two analysis approaches for CTMC. On one hand, we estimate the probabilities of interest using repeated Gillespie simulation and determine the statistical accuracy that we obtain. On the other hand, we apply a numerical reachability analysis that approximates the probability distributions of the system at several time instances. We use examples of cellular processes to demonstrate the superiority of the reachability analysis if accurate results are required.

This research was supported in part by the Swiss National Science Foundation under grant 205321-111840 and by the Excellence Cluster on Multimodal Computing and Interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected E. coli cells. Genetics 149, 1633–1648 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Nature 403, 267–268 (2000)

    CAS  PubMed  Google Scholar 

  3. Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Bremaud, P.: Markov Chains. Springer, Heidelberg (1998)

    Google Scholar 

  5. Burrage, K., Hegland, M., Macnamara, F., Sidje, R.: A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In: Proc. of the Markov 150th Anniversary Conference, Boson Books, pp. 21–38 (2006)

    Google Scholar 

  6. Elowitz, M.B., Levine, M.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297, 1129–1131 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. Communications of the ACM 31(4), 440–445 (1988)

    Article  Google Scholar 

  9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  CAS  Google Scholar 

  10. Gillespie, D.T.: Markov Processes. Academic Press, New York (1992)

    Google Scholar 

  11. Gonze, D., Halloy, J., Goldbeter, A.: Robustness of circadian rhythms with respect to molecular noise. PNAS, USA 99(2), 673–678 (2002)

    Article  CAS  Google Scholar 

  12. Gonze, D., Halloy, J., Goldbeter, A.: Stochastic models for circadian oscillations: Emergence of a biological rhythm. Quantum Chemistry 98, 228–238 (2004)

    Article  CAS  Google Scholar 

  13. Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122(18), 184102 (2005)

    Article  PubMed  Google Scholar 

  14. Hasty, J., Pradines, J., Dolnik, M., Collins, J.J.: Noise-based switches and amplifiers for gene expression. PNAS, USA 97, 2075 (2000)

    Article  CAS  Google Scholar 

  15. Hellander, A.: Efficient computation of transient solutions of the chemical master equation based on uniformization and quasi-Monte carlo. J. Chem. Phys. 128(15), 154109 (2008)

    Article  PubMed  Google Scholar 

  16. Henderson, D.A., Boys, R.J., Proctor, C.J., Wilkinson, D.J.: Linking systems biology models to data: a stochastic kinetic model of p53 oscillations. In: O’Hagan, A., West, M. (eds.) Handbook of Applied Bayesian Analysis. Oxford University Press, Oxford (2009)

    Google Scholar 

  17. Henzinger, T., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite Markov chains. In: Proc. CAV. LNCS. Springer, Heidelberg (to appear, 2009)

    Google Scholar 

  18. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  19. Kierzek, A., Zaim, J., Zielenkiewicz, P.: The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. Journal of Biological Chemistry 276(11), 8165–8172 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Law, A., Kelton, D.: Simulation Modelling and Analysis. McGraw-Hill Education, New York (2000)

    Google Scholar 

  21. Little, J.W., Shepley, D.P., Wert, D.W.: Robustness of a gene regulatory circuit. The EMBO Journal 18(15), 4299–4307 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Losick, R., Desplan, C.: Stochasticity and Cell Fate. Science 320(5872), 65–68 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maamar, H., Raj, A., Dubnau, D.: Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837), 526–529 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. PNAS, USA 94, 814–819 (1997)

    Article  CAS  Google Scholar 

  25. McAdams, H.H., Arkin, A.: It’s a noisy business! Trends in Genetics 15(2), 65–69 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044144 (2006)

    Article  Google Scholar 

  27. Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D., van Oudenaarden, A.: Regulation of noise in the expression of a single gene. Nature Genetics 31(1), 69–73 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Patel, P., Arcangioli, B., Baker, S., Bensimon, A., Rhind, N.: DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell 17, 308–316 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973), 415–418 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Rao, C., Wolf, D., Arkin, A.: Control, exploitation and tolerance of intracellular noise. Nature 420(6912), 231–237 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. Sandmann, W.: Stochastic simulation of biochemical systems via discrete-time conversion. In: Proceedings of the 2nd Conference on Foundations of Systems Biology in Engineering, pp. 267–272. Fraunhofer IRB Verlag (2007)

    Google Scholar 

  32. Sandmann, W., Maier, C.: On the statistical accuracy of stochastic simulation algorithms implemented in Dizzy. In: Proc. WCSB, pp. 153–156 (2008)

    Google Scholar 

  33. Sandmann, W., Wolf, V.: A computational stochastic modeling formalism for biological networks. Enformatika Transactions on Engineering, Computing and Technology 14, 132–137 (2006)

    Google Scholar 

  34. Sandmann, W., Wolf, V.: Computational probability for systems biology. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 33–47. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  35. Sidje, R., Burrage, K., MacNamara, S.: Inexact uniformization method for computing transient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562–2580 (2007)

    Article  Google Scholar 

  36. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. Journal of Theoretical Biology 218, 309–321 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1995)

    Google Scholar 

  38. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS, USA 99(20), 12795–12800 (2002)

    Article  CAS  Google Scholar 

  39. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. PNAS, USA 98(15), 8614–8619 (2001)

    Article  CAS  Google Scholar 

  40. Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. van Moorsel, A., Sanders, W.: Adaptive uniformization. ORSA Communications in Statistics: Stochastic Models 10(3), 619–648 (1994)

    Google Scholar 

  42. Warmflash, A., Dinner, A.: Signatures of combinatorial regulation in intrinsic biological noise. PNAS 105(45), 17262–17267 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall, Boca Raton (2006)

    Google Scholar 

  44. Zhang, J., Watson, L.T., Cao, Y.: A modified uniformization method for the solution of the chemical master equation. TR-07-31, Computer Science, Virginia Tech. (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V. (2009). Approximation of Event Probabilities in Noisy Cellular Processes. In: Degano, P., Gorrieri, R. (eds) Computational Methods in Systems Biology. CMSB 2009. Lecture Notes in Computer Science(), vol 5688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03845-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03845-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03844-0

  • Online ISBN: 978-3-642-03845-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics