Advertisement

On Coupling Models Using Model-Checking: Effects of Irinotecan Injections on the Mammalian Cell Cycle

  • Elisabetta De Maria
  • François Fages
  • Sylvain Soliman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5688)

Abstract

In systems biology, the number of models of cellular processes increases rapidly, but re-using models in different contexts or for different questions remains a challenging issue. In this paper, we show how the validation of a coupled model and the optimization of its parameters with respect to biological properties formalized in temporal logics, can be done automatically by model-checking. More specifically, we illustrate this approach with the coupling of existing models of the mammalian cell cycle, the p53-based DNA-damage repair network, and irinotecan metabolism, with respect to the biological properties of this anticancer drug.

Keywords

Model Check Temporal Logic Kripke Structure System Biology Markup Language Computation Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., Alexander, J., Julian, L., Martin, R., Keith, R.: In: Garland (ed.) Molecular biology of the cell (2008)Google Scholar
  2. 2.
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochem. Biophys. 38(3), 271–286 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    Batt, G., Belta, C., Weiss, R.: Temporal Logic Analysis of Gene Networks under Parameter Uncertainty. IEEE Transactions of Automatic Control 53, 215–229 (2008)CrossRefGoogle Scholar
  4. 4.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the continuous time Markov chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006); CMSB 2005 Special IssueCrossRefGoogle Scholar
  7. 7.
    Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An Environment for Modeling Biological Systems and Formalizing Experimental Knowledge. Bioinformatics 22, 1805–1807 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Chickermane, V., Ray, A., Sauro, H.M., Nadim, A.: A model for p53 Dynamics Triggered by DNA damage. Siam Journal on Applied Dynamical Systems 6(1), 61–78 (2007)CrossRefGoogle Scholar
  10. 10.
    Ciliberto, A., Novak, B., Tyson, J.J.: Steady States on Oscillations in the p53/Mdm2 Network. Cell Cycle 4(3), 488–493 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L., Jha, S.K., Legay, A.: Statistical Model Checking in Biolab: Applications to the Automated Analysis of T-Cell Receptor Signaling Pathway. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 231–250. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Dimitrio, L.: Irinotecan: Modelling intracellular pharmacokinetics and pharmacodynamics. M2 master thesis (in French, English summary), University Pierre-et-Marie-Curie and INRIA internal report (June 2007)Google Scholar
  15. 15.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.: Pathway logic: Symbolic analysis of biological signaling. In: Proc. of the seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)Google Scholar
  16. 16.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) The Handbook of Theoretical Computer Science, vol. B (ch. 16), pp. 995–1072. Elsevier Science Publisher, Amsterdam (1990)Google Scholar
  17. 17.
    Fages, F.: Temporal logic constraints in the biochemical abstract machine biocham (invited talk). In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 1–5. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Fages, F., Rizk, A.: From Model-Checking to Temporal Logic Constraint Solving. In: CP 2009: Proc. of the fifteenth International Conference on Principles and Practice of Constraint Programming. LNCS. Springer, Heidelberg (to appear, 2009)Google Scholar
  19. 19.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4(2), 64–73 (2004)CrossRefGoogle Scholar
  20. 20.
    Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liton, Y., Polak, P., Lahav, G., Alon, U.: Oscillations and variability in the p53 system. Molecular System Biology, 2006.0033 (2006)Google Scholar
  21. 21.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry 104, 1876–1889 (2000)CrossRefGoogle Scholar
  22. 22.
    Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Gillespie, D.T.: General method for numerically simulating stochastic time evolution of coupled chemical-reactions. Journal of Computational Physics 22, 403–434 (1976)CrossRefGoogle Scholar
  24. 24.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)CrossRefGoogle Scholar
  25. 25.
    Heath, J.K., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Hucka, M., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)CrossRefPubMedGoogle Scholar
  27. 27.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: A tool for probabilistic model checking. In: First International Conference on Quantitative Evaluation of Systems (QEST 2004), pp. 322–323. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  28. 28.
    Matsuo, T., Yamaguchi, S., Mitsui, S., Emi, A., Shimoda, F., Okamura, H.: Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255–259 (2003)CrossRefPubMedGoogle Scholar
  29. 29.
    Mormont, M.C., Levi, F.: Circadian system alterations during cancer processes. International Journal of Cancer 70, 241–247 (1997)CrossRefPubMedGoogle Scholar
  30. 30.
    Novák, B., Tyson, J.J.: A model for restriction point control of the mammalian cell cycle. Journal of Theoretical Biology 230, 563–579 (2004)CrossRefPubMedGoogle Scholar
  31. 31.
    Ohdo, S., Makinosumi, T., Ishizaki, T., Yukawa, E., Higuchi, S., Nakano, S., Ogawa, N.: Cell Cycle-Dependent Chronotoxicity of Irinotecan Hydrochloride in Mice. Journal of Pharmacology and Experimental Terapeutics 283(3), 1383–1388 (1997)Google Scholar
  32. 32.
    Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Proc. of Concurrent Models in Molecular Biology (Bioconcur 2004), affiliated with CONCUR 2004 (2004)Google Scholar
  33. 33.
    Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic Algebraic Model Checking I: Challenges from Systems Biology. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Pommier, Y.: Camptothecins and Topoisomerase I: A Foot in the Door. Targeting the genome beyond Topoisomerase I with camptothecins and Novel Anticancer drugs: importance of DNA Replication, Repair and Cell Cycle Checkpoints. Preprint NIH, NCI (2004), http://discover.nci.nih.gov/pommier/Pommier.Top1.pdf
  35. 35.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proc. of the sixth Pacific Symposium of Biocomputing, pp. 459–470 (2001)Google Scholar
  36. 36.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. BioInformatics (July 2009) (to appear)Google Scholar
  37. 37.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Zhou, Y., Gwadry, F.G., Reinhold, W.C., Miller, L.D., Smith, L.H., Scherf, U., Liu, E.T., kohn, K.W., Pommier, Y., Weinstein, J.N.: Transcriptional Regulation of Mitotic Genes by Camptothecin-induced DNA Damage: Microarray Analysis of Doseand Time-dependent Effects. Cancer Research 62, 1668–1695 (2002)Google Scholar
  39. 39.
    Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press, Boston (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elisabetta De Maria
    • 1
  • François Fages
    • 1
  • Sylvain Soliman
    • 1
  1. 1.Project-team ContraintesINRIA Paris-RocquencourtFrance

Personalised recommendations