Skip to main content

A Qualitative Approach to Localization and Navigation Based on Visibility Information

  • Conference paper
Spatial Information Theory (COSIT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5756))

Included in the following conference series:

Abstract

In this paper we describe a model for navigation of an autonomous agent in which localization, path planning, and locomotion is performed in a qualitative manner instead of relying on exact coordinates. Our approach is grounded in a decomposition of navigable space based on a novel model of visibility and occlusion relations between extended objects for agents with very limited sensor abilities. A graph representation reflecting the adjacency between the regions of the decomposition is used as a topological map of the environment. The visibility-based representation can be constructed autonomously by the agent and navigation can be performed by simple reactive navigation behaviors. Moreover, the representation is well-qualified to be shared between multiple agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montello, D.: Navigation. In: Shah, P., Miyake, A. (eds.) The Cambridge Handbook of Visuospatial Thinking, pp. 257–294 (2005)

    Google Scholar 

  2. Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  3. Kuipers, B.: The Spatial Semantic Hierarchy. Artificial Intelligence (119), 191–233 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Autonomous Robots 5, 111–125 (1998)

    Article  Google Scholar 

  5. Remolina, E., Kuipers, B.: Towards a general theory of topological maps. Artificial Intelligence 152(1), 47–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Reese, H.W. (ed.) Advances in Child Development and Behavior, vol. 10, pp. 9–55. Academic Press, London (1975)

    Google Scholar 

  7. Tversky, B.: Distortions in cognitive maps. Geoforum 23, 131–138 (1992)

    Article  Google Scholar 

  8. Denis, M.: The description of routes: A cognitive approach to the production of spatial discourse. Cahiers Psychologie Cognitive 16(4), 409–458 (1997)

    Google Scholar 

  9. Sorrows, M.E., Hirtle, S.C.: The nature of landmarks for real and electronic spaces. In: Freksa, C., Mark, D.M. (eds.) Spatial Information Theory. Cognitive and Computational Foundations of Geopraphic Information Science (COSIT), Berlin, August 1999. Lecture Notes on Computer Science, vol. 1661, pp. 37–50. Springer, Heidelberg (1999)

    Google Scholar 

  10. Levitt, T.S., Lawton, D.T.: Qualitative navigation for mobile robots. Artificial Intelligence 44, 305–361 (1990)

    Article  Google Scholar 

  11. Schlieder, C.: Representing visible locations for qualitative navigation. In: Carreté, N.P., Singh, M.G. (eds.) Qualitative Reasoning and Decision Technologies, pp. 523–532 (1993)

    Google Scholar 

  12. Wagner, T., Visser, U., Herzog, O.: Egocentric qualitative spatial knowledge representation for physical robots. Robotics and Autonomous Systems 49, 25–42 (2004)

    Article  Google Scholar 

  13. Tarquini, F., De Felice, G., Fogliaroni, P., Clementini, E.: A qualitative model for visibility relations. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667, pp. 510–513. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Galton, A.: Lines of sight. In: Keane, M., Cunningham, P., Brady, M., Byrne, R. (eds.) AI and Cognitive Science 1994, Proceedings of the Seventh Annual Conference, September 8-9, 1994, Trinity College Dublin, pp. 103–113 (1994)

    Google Scholar 

  15. Köhler, C.: The occlusion calculus. In: Proc. Workshop on Cognitive Vision (2002)

    Google Scholar 

  16. Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference (KR 1992), pp. 165–176. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  17. Billen, R., Clementini, E.: A model for ternary projective relations between regions. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 310–328. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Clementini, E., Billen, R.: Modeling and computing ternary projective relations between regions. IEEE Transactions on Knowledge and Data Engineering (2006)

    Google Scholar 

  19. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)

    Article  Google Scholar 

  21. Ligozat, G.: Qualitative triangulation for spatial reasoning. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 54–68. Springer, Heidelberg (1993)

    Google Scholar 

  22. Scivos, A., Nebel, B.: The finest of its class: The practical natural point-based ternary calculus \(\mathcal{LR}\) for qualitative spatial reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS, vol. 3343, pp. 283–303. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fogliaroni, P., Wallgrün, J.O., Clementini, E., Tarquini, F., Wolter, D. (2009). A Qualitative Approach to Localization and Navigation Based on Visibility Information. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds) Spatial Information Theory. COSIT 2009. Lecture Notes in Computer Science, vol 5756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03832-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03832-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03831-0

  • Online ISBN: 978-3-642-03832-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics