Skip to main content

Pesticides

  • Chapter
  • First Online:
Contact Dermatitis

Abstract

Pesticides include plant protection and biocidal products. Many pesticides are hazardous to human health. Dermal exposure may cause systemic toxic effects, dermatitis, or other skin effects. The use of pesticides in Europe and Northern America is regulated for the protection of the environment and health, while severe problems are caused in developing countries. Adequate protective equipment, working conditions, and awareness of risks are essential for the prevention of severe health effects. Fungicides and insecticides are the most frequent causes of allergic contact dermatitis. Skin absorption of organophosphorous compounds and paraquat causes severe toxic effects. Biocides such as MCI/MI, glutaraldehyde, dimethylfumarate, and also silver are increasingly used as preservative for the treatment of articles and materials that come into contact with the skin. Safety is important when patch testing with pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization and United Nations Environmental Programme (WHO/UNEP) (1990) Public health impact of pesticides used in agriculture. WHO, Geneva

    Google Scholar 

  2. Wilkinson CF (1990) Introduction and overview. In: Baker SR, Wilkinson CF (eds) The effects of pesticides on human health. Princeton Scientific Publishing, Princeton, NJ, pp 5–33 (Advances in Modern Environmental Toxicology, vol XVIII)

    Google Scholar 

  3. Dinham B (2003) The perils of paraquat. Sales targeted at developing countries. Pesticide News 60:4–7

    Google Scholar 

  4. Wesseling C, Corriols M, Bravo V (2005) Acute pesticide poisoning and pesticide registration in Central America. Toxicol Appl Pharmacol 207(2 Suppl):697–705

    Article  PubMed  Google Scholar 

  5. Fenske RA (2005) State-of-the-art measurement of agricultural pesticide exposures. Scand J Work Environ Health 31 (suppl 1):67–73; 63–65

    Google Scholar 

  6. Legaspi JA, Zenz C (1994) Occupational health aspects of pesticides. Clinical and hygienic principles. In: Zenz C, Dickerson OB, Horvath EP (eds) Occupational medicine, 3rd edn, Chap 47. Mosby, St Louis, pp 617–653

    Google Scholar 

  7. Blanco LE, Aragón A, Lundberg I et al (2005) Determinants of dermal exposure among Nicaraguan subsistence farmers during pesticide applications with backpack sprayers. Ann Occup Hyg 49:17–24

    PubMed  Google Scholar 

  8. Andersen KE (1999) Systemic toxicity from percutaneous absorption. In: Adams RM (ed) Occupational skin disease, 3rd edn. Saunders, Philadelphia, pp 69–85

    Google Scholar 

  9. Nielsen JB, Nielsen F, Sørensen JA (2004) In vitro percutaneous penetration of five pesticides – effects of molecular weight and solubility characteristics. Ann Occup Hyg 48:697–705

    Article  PubMed  CAS  Google Scholar 

  10. Nielsen JB, Nielsen F, Sørensen JA (2007) Defense against dermal exposures is only skin deep: significantly increased penetration through slightly damaged skin. Arch Dermatol Res 299:423–431

    Article  PubMed  Google Scholar 

  11. Wester RC, Maibach HI (1985) In vivo percutaneous absorption and decontamination of pesticides in humans. J Toxicol Environ Health 16:25–37

    Article  PubMed  CAS  Google Scholar 

  12. Wester RC, Maibach HI (1996) Percutaneous absorption: short-term exposure, lag time, multiple exposures, model variations, and absorption from clothing. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology, 5th edn, Chap 4. Taylor and Francis, Washington, pp 35–48

    Google Scholar 

  13. Aragón A, Blanco L, López L et al (2004) Reliability of a visual scoring system with fluorescent tracers to assess dermal pesticide exposure. Ann Occup Hyg 48:601–606

    Article  PubMed  Google Scholar 

  14. Grandjean P (1990) Organophosphorus compounds. In: Skin penetration: hazardous chemicals at work, Ch 12. Taylor and Francis, Washington, pp 157–170

    Google Scholar 

  15. Mark KA, Brancaccio RR, Soter NA et al (1999) Allergic contact and photoallergic contact dermatitis to plant and pesticide allergens. Arch Dermatol 135:67–70

    Article  PubMed  CAS  Google Scholar 

  16. Manuskiatti W, Abrams K, Hogan DJ et al (2000) Pesticide-related dermatoses in agricultural workers. In: Kanerva L, Elsner P, Wahlberg JE, Maibach HI (eds) Handbook of occupational dermatology, Chap 92. Springer, Berlin, pp 781–802

    Google Scholar 

  17. Matsushita T, Nomura S, Wakatsuki T (1980) Epidemiology of contact dermatitis from pesticides in Japan. Contact Dermatitis 6:255–259

    Article  PubMed  CAS  Google Scholar 

  18. Paulsen E (1998) Occupational dermatitis in Danish gardeners and greenhouse workers. Contact Dermatitis 38:14–19

    Article  PubMed  CAS  Google Scholar 

  19. Hogan DJ, Grafton LH (1999) Pesticides and other agricultural chemicals. In: Adams RM (ed) Occupational skin disease, 3rd edn. Saunders, Philadelphia, pp 597–622

    Google Scholar 

  20. Wahlberg JE, Boman A (1985) Guinea pig maximization test. In: Andersen KE, Maibach HI (eds) Contact allergy predictive tests in guinea pigs. Karger, Basel, pp 59–106 (Current Problems in Dermatology, vol 14)

    Google Scholar 

  21. Lisi P, Caraffini S, Assalve D (1987) Irritation and sensitization potential of pesticides. Contact Dermatitis 17:212–218

    Article  PubMed  CAS  Google Scholar 

  22. Marzulli F, Maguire HC (1982) Usefulness and limitations of various guinea-pig test methods in detecting human skin sensitizers. Validation of guinea-pig tests for skin hypersensitivity. Food Chem Toxicol 20:67–74

    Article  PubMed  CAS  Google Scholar 

  23. Heras-Mendaza F, Casado-Fariñas I, Paredes-Gascón M et al (2008) Erythema multiforme-like eruption due to an irritant contact dermatitis from a glyphosate pesticide. Contact Dermatitis 59:54–56

    Article  PubMed  Google Scholar 

  24. Horiuchi N, Oguchi S, Nagami H et al (2008) Pesticide-related dermatitis in Saku district, Japan, 1975-2000. Int J Occup Environ Health 14:25–34

    PubMed  CAS  Google Scholar 

  25. O’Malley MAO, Mathias CGT, Coye MJ (1989) Epidemiology of pesticide-related skin disease in California agriculture. In: Dosman JA, Cockroft DW (eds) Principles of health and safety in agriculture. CRC, Boca Raton, pp 301–304

    Google Scholar 

  26. Wesseling C, van Wendel de Joode B, Ruepert C et al (2001) Paraquat in developing countries. Int J Occup Environ Health 7:275–286

    Google Scholar 

  27. Garnier R (1995) Paraquat poisoning by inhalation or skin absorption. In: Bismuth C, Hall AH (eds) Paraquat poisoning – mechanisms, prevention and treatment. Dekker, New York, pp 211–234

    Google Scholar 

  28. Hayes WJ (1982) Pesticides studies in man. Williams and Wilkins, Baltimore

    Google Scholar 

  29. Franzosa JA, Osimitz TG, Maibach HI (2007) Cutaneous contact urticaria to pyrethrum-real? common? or not documented?: an evidence-based approach. Cutan Ocul Toxicol 26:57–72

    Article  PubMed  CAS  Google Scholar 

  30. Lisi P (1992) Sensitization risk of pyrethroid insecticides. Contact Dermatitis 26:349–350

    Article  PubMed  CAS  Google Scholar 

  31. Jablonska S (ed) (1975) Scleroderma and pseudoscleroderma. Polish Medical, Warsaw, p 603

    Google Scholar 

  32. Nakamura M, Arima Y, Nobuhara S et al (1999) Airborne photocontact dermatitis due to the pesticides maneb and fenitrothion. Contact Dermatitis 40:222–223

    Article  PubMed  CAS  Google Scholar 

  33. Guo YL, Wang BJ, Lee CC et al (1996) Prevalence of dermatoses and skin sensitization associated with use of pesticides in fruit farmers of southern Taiwan. Occup Environ Med 53:427–431

    Article  PubMed  CAS  Google Scholar 

  34. Matsushita T, Aoyama K (1981) Cross-reactions between some pesticides and the fungicide benomyl in contact allergy. Ind Health 19:77–83

    Article  PubMed  CAS  Google Scholar 

  35. Bruynzeel DP, van Ketel WG (1986) Contact dermatitis due to chlorothalonil in floriculture. Contact Dermatitis 14:67–68

    Article  PubMed  CAS  Google Scholar 

  36. Penagos HG (2002) Contact dermatitis caused by pesticides among banana plantation workers in Panama. Int J Occup Environ Health 8:14–18

    PubMed  Google Scholar 

  37. Penagos H, Ruepert C, Partanen T et al (2005) Pesticide patch test series for the assessment of allergic contact dermatitis among banana plantation workers in Panama. Dermatitis 15:137–145

    Article  Google Scholar 

  38. Penagos H, Jimenez V, Fallas V et al (1996) Chlorothalonil, a possible cause of erythema dyschromicum perstans (ashy dermatitis). Contact Dermatitis 35:214–218

    Article  PubMed  CAS  Google Scholar 

  39. Bruynzeel DP, Tafelkruijer J, Wilks MF (1995) Contact dermatitis due to a new fungicide used in the tulip bulb industry. Contact Dermatitis 33:8–11

    Article  PubMed  CAS  Google Scholar 

  40. Boman A, Montelius J, Rissanen R-L et al (2000) Sensitizing potential of chlorothalonil in the guinea pig and the mouse. Contact Dermatitis 43:273–279

    Article  PubMed  CAS  Google Scholar 

  41. Sudakin DL, Trevathan WR (2003) DEET: a review and update of safety and risk in the general population. J Toxicol Clin Toxicol 41:831–839

    Article  PubMed  CAS  Google Scholar 

  42. Rantanen T (2008) The cause of the Chinese sofa/chair dermatitis epidemic is likely to be contact allergy to dimethylfumarate, a novel potent contact sensitizer. Br J Dermatol 159:218–221

    Article  PubMed  CAS  Google Scholar 

  43. Lidén C (1990) Facial dermatitis caused by chlorothalonil in a paint. Contact Dermatitis 22:206–211

    Article  PubMed  Google Scholar 

  44. Spindeldreier A, Deichmann B (1980) Kontaktdermatitis auf ein Holzschutzmittel mit einer neven fungiziden Wirksubstanz. Dermatosen 28:88–90

    CAS  Google Scholar 

  45. Lensen G, Jungbauer F, Gonçalo M et al (2007) Airborne irritant contact dermatitis and conjunctivitis after occupational exposure to chlorothalonil in textiles. Contact Dermatitis 57:181–186

    Article  PubMed  CAS  Google Scholar 

  46. Lewis PG, Emmet EA (1987) Irritant dermatitis from tributyl tin oxide and contact allergy from chlorocresol. Contact Dermatitis 17:129–132

    Article  PubMed  CAS  Google Scholar 

  47. de Groot AC (2008) Patch testing. Test concentrations and vehicles for 4 350 chemicals, 3rd edn. Acdegroot publishing, Wapserveen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Lidén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lidén, C. (2011). Pesticides. In: Johansen, J., Frosch, P., Lepoittevin, JP. (eds) Contact Dermatitis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03827-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03827-3_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03826-6

  • Online ISBN: 978-3-642-03827-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics