Skip to main content

The Communication Complexity of Non-signaling Distributions

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

Abstract

We study a model of communication complexity that encompasses many well-studied problems, including classical and quantum communication complexity, the complexity of simulating distributions arising from bipartite measurements of shared quantum states, and XOR games. In this model, Alice gets an input x, Bob gets an input y, and their goal is to each produce an output a,b distributed according to some pre-specified joint distribution p(a,b|x,y). Our results apply to any non-signaling distribution, that is, those where Alice’s marginal distribution does not depend on Bob’s input, and vice versa.

By introducing a simple new technique based on affine combinations of lower-complexity distributions, we give the first general technique to apply to all these settings, with elementary proofs and very intuitive interpretations. The lower bounds we obtain can be expressed as linear programs (or SDPs for quantum communication). We show that the dual formulations have a striking interpretation, since they coincide with maximum violations of Bell and Tsirelson inequalities. The dual expressions are closely related to the winning probability of XOR games. Despite their apparent simplicity, these lower bounds subsume many known communication complexity lower bound methods, most notably the recent lower bounds of Linial and Shraibman for the special case of Boolean functions.

We show that as in the case of Boolean functions, the gap between the quantum and classical lower bounds is at most linear in the size of the support of the distribution, and does not depend on the size of the inputs. This translates into a bound on the gap between maximal Bell and Tsirelson inequality violations, which was previously known only for the case of distributions with Boolean outcomes and uniform marginals. It also allows us to show that for some distributions, information theoretic methods are necessary to prove strong lower bounds.

Finally, we give an exponential upper bound on quantum and classical communication complexity in the simultaneous messages model, for any non-signaling distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yao, A.C.C.: Some complexity questions related to distributive computing. In: Proc. 11th STOC, pp. 209–213 (1979)

    Google Scholar 

  2. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  3. Maudlin, T.: Bell’s inequality, information transmission, and prism models. In: Biennal Meeting of the Philosophy of Science Association, pp. 404–417 (1992)

    Google Scholar 

  4. Brassard, G., Cleve, R., Tapp, A.: Cost of Exactly Simulating Quantum Entanglement with Classical Communication. Phys. Rev. Lett. 83, 1874–1877 (1999); quant-ph/9901035

    Article  Google Scholar 

  5. Steiner, M.: Towards quantifying non-local information transfer: finite-bit non-locality. Phys. Lett. A 270, 239–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Toner, B.F., Bacon, D.: Communication Cost of Simulating Bell Correlations. Phys. Rev. Lett. 91, 187904 (2003)

    Article  Google Scholar 

  7. Cerf, N.J., Gisin, N., Massar, S., Popescu, S.: Simulating Maximal Quantum Entanglement without Communication. Phys. Rev. Lett. 94(22), 220403 (2005)

    Article  Google Scholar 

  8. Degorre, J., Laplante, S., Roland, J.: Classical simulation of traceless binary observables on any bipartite quantum state. Phys. Rev. A 75(012309) (2007)

    Google Scholar 

  9. Regev, O., Toner, B.: Simulating quantum correlations with finite communication. In: Proc. 48th FOCS, pp. 384–394 (2007)

    Google Scholar 

  10. Shi, Y., Zhu, Y.: Tensor norms and the classical communication complexity of nonlocal quantum measurement. SIAM J. Comput. 38(3), 753–766 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jones, N.S., Masanes, L.: Interconversion of nonlocal correlations. Phys. Rev. A 72, 052312 (2005)

    Article  Google Scholar 

  12. Barrett, J., Pironio, S.: Popescu-Rohrlich correlations as a unit of nonlocality. Phys. Rev. Lett. 95, 140401 (2005)

    Article  Google Scholar 

  13. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. Random Struct. Algorithms 34(3), 368–394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Navascues, M., Pironio, S., Acin, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008)

    Article  Google Scholar 

  15. Randall, C.H., Foulis, D.J.: Operational statistics and tensor products. In: Interpretations and Foundations of Quantum Theory, Volume Interpretations and Foundations of Quantum Theory, pp. 21–28. Wissenschaftsverlag, BibliographischesInstitut (1981)

    Google Scholar 

  16. Foulis, D.J., Randall, C.H.: Empirical logic and tensor products. In: Interpretations and Foundations of Quantum Theory, Volume Interpretations and Foundations of Quantum Theory, pp. 1–20. Wissenschaftsverlag, BibliographischesInstitut (1981)

    Google Scholar 

  17. Kläy, M., Randall, C.H., Foulis, D.J.: Tensor products and probability weights. Int. J. Theor. Phys. 26(3), 199–219 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wilce, A.: Tensor products in generalized measure theory. Int. J. Theor. Phys. 31(11), 1915–1928 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75(3), 032304 (2007)

    Google Scholar 

  20. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35(4), 787–803 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tsirelson, B.S.: Zapiski Math. Inst. Steklov (LOMI) 142, 174–194 (1985); English translation in Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Soviet Math. 36, 557–570 (1987)

    Google Scholar 

  22. Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures of sign matrices. Combinatorica 27, 439–463 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  24. Tsirelson, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  25. Yao, A.C.C.: On the power of quantum fingerprinting. In: Proc. 35th STOC, pp. 77–81 (2003)

    Google Scholar 

  26. Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fingerprinting. In: Proc. 21st CCC, pp. 288–295 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Degorre, J., Kaplan, M., Laplante, S., Roland, J. (2009). The Communication Complexity of Non-signaling Distributions. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics