Skip to main content

Video Super Resolution Using Duality Based TV-L 1 Optical Flow

  • Conference paper
Pattern Recognition (DAGM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5748))

Included in the following conference series:

Abstract

In this paper, we propose a variational framework for computing a superresolved image of a scene from an arbitrary input video. To this end, we employ a recently proposed quadratic relaxation scheme for high accuracy optic flow estimation. Subsequently we estimate a high resolution image using a variational approach that models the image formation process and imposes a total variation regularity of the estimated intensity map. Minimization of this variational approach by gradient descent gives rise to a deblurring process with a nonlinear diffusion. In contrast to many alternative approaches, the proposed algorithm does not make assumptions regarding the motion of objects. We demonstrate good experimental performance on a variety of real-world examples. In particular we show that the computed super resolution images are indeed sharper than the individual input images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chambolle, A.: An Algorithm for Total Variation Minimization and Applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  2. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L1 optical flow computation. In: Proceedings of the Dagstuhl Visual Motion Analysis Workshop (2008)

    Google Scholar 

  3. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M., Szeliski, R.: A Database and Evaluation Methodology for Optical Flow, http://vision.middlebury.edu/flow/data/

  4. Elad, E., Feuer, A.: Restoration of single super-resolution image from several blurred, noisy and down-sampled measured images. IEEE Trans. Image Processing 6, 1646–1658 (1997)

    Article  Google Scholar 

  5. Irani, M., Peleg, S.: Improving resolution by image registration. In: CVGIP: Graph. Models Image Process, pp. 231–239 (1991)

    Google Scholar 

  6. Ur, H., Gross, D.: Improved resolution from subpixel shifted pictures. Graphical Models and Image Processing 54, 181–186 (1992)

    Article  Google Scholar 

  7. Farsiu, S., Robinson, M., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Transactions on Image Processing 13, 1327–1344 (2004)

    Article  Google Scholar 

  8. Kim, S., Bose, N., Valenzuela, H.: Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Transactions on Acoustics, Speech and Signal Processing 38, 1013–1027 (1990)

    Article  Google Scholar 

  9. Huang, T., Tsai, R.: Multi-frame image restoration and registration. Advances in Computer Vision and Image Processing 1, 317–339 (1984)

    Google Scholar 

  10. Elad, M., Feuer, A.: Super-resolution reconstruction of image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 817–834 (1999)

    Article  Google Scholar 

  11. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pock, T.: Fast Total Variation for Computer Vision. Graz University of Technology, Austria (2008) (PhD)

    Google Scholar 

  13. Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Malinfar, P.: MDSP Super-Resolution And Demosaicing Datasets. University of California, Santa Cruz, http://www.ee.ucsc.edu/~milanfar/software/sr-datasets.html

  15. Wang, C.: Vision and Autonomous Systems Center’s Image Database. Carnegie Mellon University, http://vasc.ri.cmu.edu/idb/html/motion/index.html

  16. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the Non-Local-Means to Super-Resolution Reconstruction. IEEE Transactions on Image Processing 18, 36–51 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ebrahimi, M., Vrscay, R.: Multi-Frame Super-Resolution with No Explicit Motion Estimation IPCV, pp. 455–459 (2008)

    Google Scholar 

  18. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  19. Zomet, A., Peleg, S.: Superresolution from multiple images having arbitrary mutual motion. In: Super-Resolution Imaging, pp. 195–209. Kluwer, Dordrecht (2001)

    Google Scholar 

  20. Marquina, A., Osher, S.J.: Image Super-Resolution by TV-Regularization and Bregman Iteration. Journal of Scientific Computing 37(3) (2008)

    Google Scholar 

  21. Daimler Research Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitzel, D., Pock, T., Schoenemann, T., Cremers, D. (2009). Video Super Resolution Using Duality Based TV-L 1 Optical Flow. In: Denzler, J., Notni, G., Süße, H. (eds) Pattern Recognition. DAGM 2009. Lecture Notes in Computer Science, vol 5748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03798-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03798-6_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03797-9

  • Online ISBN: 978-3-642-03798-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics