Skip to main content

Shape Classification Using a Flexible Graph Kernel

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

Abstract

The medial axis being an homotopic transformation, the skeleton of a 2D shape corresponds to a planar graph having one face for each hole of the shape and one node for each junction or extremity of the branches. This graph is non simple since it can be composed of loops and multiple-edges. Within the shape comparison framework, such a graph is usually transformed into a simpler structure such as a tree or a simple graph hereby loosing major information about the shape. In this paper, we propose a graph kernel combining a kernel between bags of trails and a kernel between faces. The trails are defined within the original complex graph and the kernel between trails is enforced by an edition process. The kernel between bags of faces allows to put an emphasis on the holes of the shapes and hence on their genre. The resulting graph kernel is positive semi-definite on the graph domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vision 35(1), 13–32 (1999)

    Article  Google Scholar 

  2. Ruberto, C.D.: Recognition of shapes by attributed skeletal graphs. Pattern Recognition 37(1), 21–31 (2004)

    Article  Google Scholar 

  3. Suard, F., Rakotomamonjy, A., Bensrhair, A.: Kernel on bag of paths for measuring similarity of shapes. In: European Symposium on Artificial Neural Networks, Bruges-Belgique (April 2007)

    Google Scholar 

  4. Bai, X., Latecki, J.: Path Similarity Skeleton Graph Matching. IEEE PAMI 30(7) (2008)

    Google Scholar 

  5. Goh, W.B.: Strategies for shape matching using skeletons. Computer Vision and Image Understanding 110, 326–345 (2008)

    Article  Google Scholar 

  6. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

    Article  MathSciNet  Google Scholar 

  7. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Trans. on PAMI 26(5), 550–571 (2004)

    Google Scholar 

  8. Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using association graphs. IEEE Trans. on PAMI 21(11), 1105–1120 (1999)

    Google Scholar 

  9. Neuhaus, M., Bunke, H.: Bridging the Gap between Graph Edit Distance and Kernel Machines. Machine Perception and Artificial Intelligence, vol. 68. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  10. Vishwanathan, S., Borgwardt, K.M., Kondor, I.R., Schraudolph, N.N.: Graph kernels. Journal of Machine Learning Research 9, 1–37 (2008)

    Google Scholar 

  11. Dupé, F.X., Brun, L.: Edition within a graph kernel framework for shape recognition. In: GbRPR 2009, pp. 11–20 (2009)

    Google Scholar 

  12. Haussler, D.: Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz (1999)

    Google Scholar 

  13. Dupé, F.X., Brun, L.: Tree covering within a graph kernel framework for shape classification. In: ICIAP 2009 (accepted, 2009)

    Google Scholar 

  14. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernel between labeled graphs. In: Proc. of the Twentieth International conference on machine Learning (2003)

    Google Scholar 

  15. Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. CVIU 95, 1–29 (2004)

    Google Scholar 

  16. Grady, L.: Random Walks for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  17. Horváth, T.: Cyclic pattern kernels revisited. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 791–801. Springer, Heidelberg (2005)

    Google Scholar 

  18. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  19. Wang, J., Plataniotis, K., Lu, J., Venetsanopoulos, A.: Kernel quadratic discriminant for small sample size problem. Pattern Recognition 41(5), 1528–1538 (2008)

    Article  MATH  Google Scholar 

  20. LEMS: shapes databases, http://www.lems.brown.edu/vision/software/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dupé, FX., Brun, L. (2009). Shape Classification Using a Flexible Graph Kernel. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics