Skip to main content

Homological Tree-Based Strategies for Image Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Abstract

Homological characteristics of digital objects can be obtained in a straightforward manner computing an algebraic map φ over a finite cell complex K (with coefficients in the finite field \(\textbf{F}_2=\{0,1\}\)) which represents the digital object [9]. Computable homological information includes the Euler characteristic, homology generators and representative cycles, higher (co)homology operations, etc. This algebraic map φ is described in combinatorial terms using a mixed three-level forest. Different strategies changing only two parameters of this algorithm for computing φ are presented. Each one of those strategies gives rise to different maps, although all of them provides the same homological information for K. For example, tree-based structures useful in image analysis like topological skeletons and pyramids can be obtained as subgraphs of this forest.

This work has been partially supported by PAICYT research project FQM-296, “Andalusian research project” PO6-TIC-02268, Spanish MEC project MTM2006-03722 and the Austrian Science Fund under grant P20134-N13.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burt, P., Hong, T.-H., Rosenfeld, A.: Segmentation and estimation of image region properties through cooperative hierarchical computation. IEEE Transactions on Systems, Man and Cybernetics, 802–809 (December 1981)

    Google Scholar 

  2. Damiand, G., Lienhardt, P.: Removal and contraction for n-dimensional generalized maps. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 408–419. Springer, Heidelberg (2003)

    Google Scholar 

  3. Brun, L., Kropatsch, W.G.: Introduction to combinatorial pyramids. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 108–128. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Delfinado, C.J.A., Edelsbrunner, H.: An Incremental Algorithm for Betti Numbers of Simplicial Complexes on the 3–Sphere. Comput. Aided Geom. Design 12, 771–784 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gonzalez-Diaz, R., Ion, A., Iglesias-Ham, M., Kropatsch, W.G.: Irregular Graph Pyramids and Representative Cocycles of Cohomology Generators. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 263–272. Springer, Heidelberg (2009)

    Google Scholar 

  6. Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B., Molina-Abril, H., Real, P.: Integral Operators for Computing Homology Generators at Any Dimension. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 356–363. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Haxhimusa, Y.: The structurally Optimal Dual Graph Pyramid and its application in image partitioning. Dissertations in Artificial Intelligence, vol. 308 (2007)

    Google Scholar 

  8. Kropatsch, W.G.: Equivalent contraction kernels and the domain of dual irregular pyramids. Tech. report PRIP-TR-42, Vienna University of Technology

    Google Scholar 

  9. Molina-Abril, H., Real, P.: Cell AT-models for digital volumes. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 314–323. Springer, Heidelberg (2009)

    Google Scholar 

  10. Molina-Abril, H., Real, P.: Advanced Homological information on 3D Digital volumes. In: SSPR 2008. LNCS, vol. 5342, pp. 361–371. Springer, Heidelberg (2008)

    Google Scholar 

  11. Suuriniemi, S., Tarhasaari, T., Kettunen, L.: Generalization of the spanning-tree technique. IEEE Transactions on Magnetics 38(2), 525–528 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Real, P., Molina-Abril, H., Kropatsch, W. (2009). Homological Tree-Based Strategies for Image Analysis. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics