Advertisement

Developmental Computing

(Extended Abstract)
  • Przemyslaw Prusinkiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)

Abstract

Since their inception over forty years ago, L-systems have proven to be a useful conceptual and programming framework for modeling the development of plants at different levels of abstraction and different spatial scales. Formally, L-systems offer a means of defining cell complexes with changing topology and geometry. Associated with these complexes are self-configuring systems of equations that represent functional aspects of the models. The close coupling of topology, geometry and computation constitutes a computing paradigm inspired by nature, termed developmental computing. We analyze distinctive features of this paradigm within and outside the realm of biological models.

Keywords

natural computing dynamic system with a dynamic structure L-system modeling of plant development geometric modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, M., Prusinkiewicz, P., DeJong, T.: Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytologist, 869–880 (2005)Google Scholar
  2. 2.
    Costes, E., Smith, C., Renton, M., Guédon, Y., Prusinkiewicz, P., Godin, C.: MAppleT: simulation of apple tree development using mixed stochastic and biomechanical models. Functional Plant Biology 35, 936–950 (2008)CrossRefGoogle Scholar
  3. 3.
    Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: SIGGRAPH 2006 Course Notes on Discrete Differential Geometry (2006)Google Scholar
  4. 4.
    Federl, P., Prusinkiewicz, P.: Solving differential equations in developmental models of multicellular structures expressed using L-systems. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004, Part II. LNCS, vol. 3037, pp. 65–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Giavitto, J.-L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational models for integrative and developmental biology. In: Proceedings of the Autrans seminar on modelling and simulation of biological processes in the context of genomics, pp. 65–72 (2002)Google Scholar
  6. 6.
    Giavitto, J.-L., Michel, O.: MGS: A programming language for the transformation of topological collections. Research Report 61-2001, CNRS - Université d’Evry Val d’Esonne, Evry, France (2001)Google Scholar
  7. 7.
    Giavitto, J.-L., Michel, O.: Modeling the topological organization of cellular processes. BioSystems 70, 149–163 (2003)CrossRefGoogle Scholar
  8. 8.
    Godin, C., Caraglio, Y.: A multiscale model of plant topological structures. Journal of Theoretical Biology 191, 1–46 (1998)CrossRefGoogle Scholar
  9. 9.
    Janssen, J.M., Lindenmayer, A.: Models for the control of branch positions and flowering sequences of capitula in Mycelis muralis (L.) Dumont (Compositae). New Phytologist 105, 191–220 (1987)CrossRefGoogle Scholar
  10. 10.
    Jirasek, C., Prusinkiewicz, P., Moulia, B.: Integrating biomechanics into developmental plant models expressed using L-systems. In: Spatz, H.-C., Speck, T. (eds.) Plant biomechanics 2000. Proceedings of the 3rd Plant Biomechanics Conference, pp. 615–624. Georg Thieme Verlag, Stuttgart (2000)Google Scholar
  11. 11.
    Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)CrossRefGoogle Scholar
  13. 13.
    Lindenmayer, A.: Developmental systems without cellular interaction, their languages and grammars. Journal of Theoretical Biology 30, 455–484 (1971)CrossRefGoogle Scholar
  14. 14.
    Lindenmayer, A.: Adding continuous components to L-systems. In: Rozenberg, G., Salomaa, A. (eds.) L Systems. LNCS, vol. 15, pp. 53–68. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  15. 15.
    Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3, 119–130 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Prusinkiewicz, P.: Graphical applications of L-systems. In: Proceedings of Graphics Interface 1986 — Vision Interface 1986, pp. 247–253 (1986)Google Scholar
  17. 17.
    Prusinkiewicz, P., Allen, M., Escobar-Gutierrez, A., DeJong, T.: Numerical methods for transport-resistance source-sink allocation models. In: Vos, J. (ed.) Functional-structural modeling in crop production, pp. 123–137. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  18. 18.
    Prusinkiewicz, P., Hammel, M., Hanan, J., Měch, R.: L-systems: from the theory to visual models of plants. In: Michalewicz, M.T. (ed.) Plants to ecosystems. Advances in computational life sciences I, pp. 1–27. CSIRO Publishing, Melbourne (1997)Google Scholar
  19. 19.
    Prusinkiewicz, P., Hanan, J.: L-systems: from formalism to programming languages. In: Rozenberg, G., Salomaa, A. (eds.) Lindenmayer systems: Impacts on theoretical computer science, computer graphics, and developmental biology. Springer, Berlin (1992)Google Scholar
  20. 20.
    Prusinkiewicz, P., Karwowski, R., Lane, B.: The L+C plant-modeling language. In: Vos, J. (ed.) Functional-structural modeling in crop production, pp. 27–42. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  21. 21.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990); With Hanan, J.S., Fracchia, F.D., Fowler, D.R., de Boer, M.J.M., Mercer, L.CrossRefzbMATHGoogle Scholar
  22. 22.
    Prusinkiewicz, P., Lindenmayer, A., Fracchia, F.D.: Synthesis of space-filling curves on the square grid. In: Peitgen, H.-O., Henriques, J.M., Penedo, L.F. (eds.) Fractals in the fundamental and applied sciences, pp. 341–366. North-Holland, Amsterdam (1991)Google Scholar
  23. 23.
    Prusinkiewicz, P., Samavati, F., Smith, C., Karwowski, R.: L-system description of subdivision curves. International Journal of Shape Modeling 9(1), 41–59 (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Shapiro, B., Mjolsness, E.: Developmental simulations with Cellerator. In: Second International Conference on Systems Biology (ICSB), pp. 342–351 (2001)Google Scholar
  25. 25.
    Smith, C.: On vertex-vertex systems and their use in geometric and biological modeling. PhD thesis, University of Calgary (January 2006)Google Scholar
  26. 26.
    Smith, C., Prusinkiewicz, P., Samavati, F.: Local specification of subdivision algorithms. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 313–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Smith, R.: Simulation models of phyllotaxis and morphogenesis in plants. PhD thesis, University of Calgary (January 2007)Google Scholar
  28. 28.
    Sowell, E., Haves, P.: Numerical performance of the spark graph-theoretic simulation program. In: Proc. IBPSA Building Simulation 1999, p. 14 (2001)Google Scholar
  29. 29.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Przemyslaw Prusinkiewicz
    • 1
  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations