Advertisement

On the Brightness of the Thomson Lamp: A Prolegomenon to Quantum Recursion Theory

  • Karl Svozil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)

Abstract

Some physical aspects related to the limit operations of the Thomson lamp are discussed. Regardless of the formally unbounded and even infinite number of “steps” involved, the physical limit has an operational meaning in agreement with the Abel sums of infinite series. The formal analogies to accelerated (hyper-) computers and the recursion theoretic diagonal methods are discussed. As quantum information is not bound by the mutually exclusive states of classical bits, it allows a consistent representation of fixed point states of the diagonal operator. In an effort to reconstruct the self-contradictory feature of diagonalization, a generalized diagonal method allowing no quantum fixed points is proposed.

Keywords

Beam Splitter Turing Machine Switching Process Diagonal Operator Divergent Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Neumann, J.: Various techniques used in connection with random digits. National Bureau of Standards Applied Math Series 3, 36–38 (1951); reprinted in von Neumann, J.: Collected Works. In: Traub, A.H. (ed.), vol. V, p. 768. MacMillan, New York (1963)Google Scholar
  2. 2.
    Bridgman, P.W.: A physicist’s second reaction to Mengenlehre. Scripta Mathematica 2, 101–117, 224–234 (1934); Cf. R. Landauer [59]zbMATHGoogle Scholar
  3. 3.
    Hardy, G.H.: Divergent Series. Oxford University Press, Oxford (1949)zbMATHGoogle Scholar
  4. 4.
    Rousseau, C.: Divergent series: past, present, future ....(2004) (preprint)Google Scholar
  5. 5.
    Lee, H.D.P.: Zeno of Elea. Cambridge University Press, Cambridge (1936)Google Scholar
  6. 6.
    Salmon, W.C.: Zeno’s Paradoxes. Hackett Publishing Company (1970, 2001)Google Scholar
  7. 7.
    Weyl, H.: Philosophy of Mathematics and Natural Science. Princeton University Press, Princeton (1949)zbMATHGoogle Scholar
  8. 8.
    Davis, M.: Why there is no such discipline as hypercomputation. Applied Mathematics and Computation 178, 4–7 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Doria, F.A., Costa, J.F.: Introduction to the special issue on hypercomputation. Applied Mathematics and Computation 178, 1–3 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ord, T.: The many forms of hypercomputation. Applied Mathematics and Computation 178, 143–153 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hogarth, M.L.: Does General Relativity Allow an Observer to View an Eternity in a Finite Time? Foundations of Physics Letters 5, 173–181 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Durand-Lose, J.: Abstract geometrical computation for black hole computation. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 176–187. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Németi, I., Dávid, G.: Relativistic computers and the turing barrier. Applied Mathematics and Computation 178(1), 118–142 (2006); Special Issue on HypercomputationMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schaller, M., Svozil, K.: Scale-invariant cellular automata and self-similar petri nets. The European Physical Journal B - Condensed Matter and Complex Systems (in print, 2009)Google Scholar
  15. 15.
    Calude, C.S., Staiger, L.: A note on accelerated turing machines. CDMTCS preprint nr. 350Google Scholar
  16. 16.
    Benacerraf, P.: Tasks and supertasks, and the modern Eleatics. Journal of Philosophy LIX(24), 765–784 (1962); reprinted in Ref. [6, pp. 103–129]Google Scholar
  17. 17.
    Thomson, J.F.: Tasks and supertasks. Analysis 15, 1–13 (1954); reprinted in Ref. [6, pp. 89–102]CrossRefGoogle Scholar
  18. 18.
    Thomson, J.F.: Comments on paul benacerraf’s paper. In: Zeno’s Paradoxes, pp. 131–138. Hackett Publishing Company (1970, 2001)Google Scholar
  19. 19.
    Shagrir, O.: Super-tasks, accelerating Turing machines and uncomputability. Theoretical Computer Science 317(1-3), 105–114 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hamkins, J.D.: Infinite time turing machines. Minds and Machines 12, 521–539 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  22. 22.
    Odifreddi, P.: Classical Recursion Theory, vol. 1. North-Holland, Amsterdam (1989)zbMATHGoogle Scholar
  23. 23.
    Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Svozil, K.: On the computational power of physical systems, undecidability, the consistency of phenomena and the practical uses of paradoxa. In: Greenberger, D.M., Zeilinger, A. (eds.) Fundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A. Wheeler. Annals of the New York Academy of Sciences, vol. 755, pp. 834–841. New York Academy of Sciences (1995)Google Scholar
  25. 25.
    Svozil, K.: Halting probability amplitude of quantum computers. Journal of Universal Computer Science 1(3), 201–204 (1995)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Svozil, K.: Consistent use of paradoxes in deriving contraints on the dynamics of physical systems and of no-go-theorems. Foundations of Physics Letters 8, 523–535 (1995)CrossRefGoogle Scholar
  27. 27.
    Svozil, K.: The Church-Turing thesis as a guiding principle for physics. In: Calude, C.S., Casti, J., Dinneen, M.J. (eds.) Unconventional Models of Computation, Singapore, pp. 371–385. Springer, Heidelberg (1998)Google Scholar
  28. 28.
    Svozil, K.: Randomness & Undecidability in Physics. World Scientific, Singapore (1993)CrossRefzbMATHGoogle Scholar
  29. 29.
    Leibniz, G.W.: Letters LXX, LXXI. In: Briefwechsel zwischen Leibniz und Christian Wolf, Handschriften der Königlichen Bibliothek zu Hannover. H. W. Schmidt, Halle (1860)Google Scholar
  30. 30.
    Moore, C.N.: Summable Series and Convergence Factors. American Mathematical Society, New York (1938)zbMATHGoogle Scholar
  31. 31.
    Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence sequences. AMS Surveys and Monographs series, vol. 104. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  32. 32.
    Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Springer, New York (2000)zbMATHGoogle Scholar
  33. 33.
    Costin, O.: Asymptotics and Borel Summability. Taylor & Francis Group, Boca Raton (2009)zbMATHGoogle Scholar
  34. 34.
    Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  35. 35.
    Luriè, D.: Particles and Fields. Interscience Publishers, New York (1968)Google Scholar
  36. 36.
    ‘t Hooft, G., Veltman, M.: Diagrammar. CERN preprint 73-9 (1973)Google Scholar
  37. 37.
    Leff, H.S., Rex, A.F.: Maxwell’s Demon. Princeton University Press, Princeton (1990)CrossRefGoogle Scholar
  38. 38.
    Copeland, B.J.: Even turing machines can compute uncomputable functions. In: Unconventional Models of Computation, pp. 150–164. Springer, Heidelberg (1998)Google Scholar
  39. 39.
    Potgieter, P.H.: Zeno machines and hypercomputation. Theoretical Computer Science 358(1), 23–33 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Hilbert, D.: Über das Unendliche. Mathematische Annalen 95(1), 161–190 (1926)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  42. 42.
    Mermin, N.D.: Quantum Computer Science. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  43. 43.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Academic Press, London (2005)zbMATHGoogle Scholar
  44. 44.
    Davis, M.: The Undecidable. Basic Papers on Undecidable, Unsolvable Problems and Computable Functions. Raven Press, Hewlett (1965)zbMATHGoogle Scholar
  45. 45.
    Barwise, J.: Handbook of Mathematical Logic. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  46. 46.
    Enderton, H.: A Mathematical Introduction to Logic, 2nd edn. Academic Press, San Diego (2001)zbMATHGoogle Scholar
  47. 47.
    Born, M.: Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 38, 803–827 (1926)CrossRefzbMATHGoogle Scholar
  48. 48.
    Jammer, M.: The Conceptual Development of Quantum Mechanics, 2nd edn. The History of Modern Physics, vol. 12, pp. 1800–1950. American Institute of Physics, New York (1989)Google Scholar
  49. 49.
    Zeilinger, A.: The message of the quantum. Nature 438, 743 (2005)CrossRefGoogle Scholar
  50. 50.
    Diaconis, P., Holmes, S., Montgomery, R.: Dynamical bias in the coin toss. SIAM Review 49(2), 211–235 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Murnaghan, F.D.: The Unitary and Rotation Groups. Spartan Books, Washington (1962)zbMATHGoogle Scholar
  52. 52.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Multiparticle interferometry and the superposition principle. Physics Today 46, 22–29 (1993)CrossRefGoogle Scholar
  53. 53.
    Yurke, B., McCall, S.L., Klauder, J.R.: SU(2) and SU(1,1) interferometers. Physical Review A (Atomic, Molecular, and Optical Physics) 33, 4033–4054 (1986)CrossRefGoogle Scholar
  54. 54.
    Campos, R.A., Saleh, B.E.A., Teich, M.C.: Fourth-order interference of joint single-photon wave packets in lossless optical systems. Physical Review A (Atomic, Molecular, and Optical Physics) 42, 4127–4137 (1990)CrossRefGoogle Scholar
  55. 55.
    Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Physical Review Letters 73, 58–61 (1994)CrossRefGoogle Scholar
  56. 56.
    Reck, M., Zeilinger, A.: Quantum phase tracing of correlated photons in optical multiports. In: Martini, F.D., Denardo, G., Zeilinger, A. (eds.) Quantum Interferometry, pp. 170–177. World Scientific, Singapore (1994)Google Scholar
  57. 57.
    Zukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Physical Review A (Atomic, Molecular, and Optical Physics) 55, 2564–2579 (1997)CrossRefGoogle Scholar
  58. 58.
    Svozil, K.: Noncontextuality in multipartite entanglement. J. Phys. A: Math. Gen. 38, 5781–5798 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Landauer, R.: Advertisement for a paper I like. In: Casti, J.L., Traub, J.F. (eds.) On Limits, p. 39. Santa Fe Institute Report 94-10-056, Santa Fe, NM (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karl Svozil
    • 1
  1. 1.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations