Advertisement

Approximating the Behaviours of Physarum polycephalum for the Construction and Minimisation of Synthetic Transport Networks

  • Jeff Jones
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)

Abstract

The single celled organism Physarum polycephalum efficiently constructs and minimises dynamical nutrient transport networks resembling proximity graphs. We present a model multi-agent population which collectively approximates the network behaviours of Physarum. We demonstrate spontaneous transport network formation and evolution and show that the collective population also exhibits quasi-physical emergent properties, allowing the collective population to be considered as a virtual computing material - a synthetic plasmodium. This material is used as an unconventional method to approximate spatially represented geometry problems. We demonstrate three different methods for the construction, evolution and minimisation of Physarum-like transport networks which approximate Steiner trees, relative neighbourhood graphs, convex hulls and concave hulls. The results span the Toussaint hierarchy of proximity graphs, suggesting that the foraging and minimising behaviours of Physarum reflect interplay between maximising foraging area and minimising transport distance. The properties and behaviours of the synthetic virtual plasmodium may be useful in future physical instances of unconventional computing devices, and may also provide clues to the generation of emergent computation behaviours by Physarum.

Keywords

Steiner Tree Transport Network Agent Particle Steiner Point Network Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Takagi, S., Ueda, T.: Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold physarum polycephalum. Physica D: Nonlinear Phenomena 237, 180–188 (2007)Google Scholar
  2. 2.
    Takamatsu, A.: Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Physica D: Nonlinear Phenomena 223, 180–188 (2006)CrossRefGoogle Scholar
  3. 3.
    Adamatzky, A., De Lacy Costello, B., Shirakawa, T.: Universal computation with limited resources: Belousov-zhabotinsky and physarum computers. International Journal of Bifurcation and Chaos 18, 2373–2389 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Takamatsu, A., Takaba, E., Takizawa, G.: Environment-dependent morphology in plasmodium of true slime mold physarum polycephalum and a network growth model. Journal of Theoretical Biology 256, 29–44 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the physarum plasmodium. Proceedings of the Royal Society B: Biological Sciences 271, 2305–2310 (2004)CrossRefGoogle Scholar
  6. 6.
    Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)CrossRefGoogle Scholar
  7. 7.
    Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophysical Chemistry 107, 1–5 (2004)CrossRefGoogle Scholar
  8. 8.
    Shirakawa, T., Adamatzky, A., Gunji, Y., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by physarum polycephalum. International Journal of Bifurcation and Chaos (2008) (in press)Google Scholar
  9. 9.
    Adamatzky, A.: Growing spanning trees in plasmodium machines. Kybernetes 37, 258–264 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Aono, M., Hara, M.: Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 41–54. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Tsuda, S., Aono, M., Gunji, Y.: Robust and emergent physarum logical-computing. BioSystems 73, 45–55 (2004)CrossRefGoogle Scholar
  12. 12.
    Adamatzky, A.: Physarum machine: Implementation of a kolmogorov-uspensky machine on a biological substrate. Parallel Processing Letters 17, 455–467 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tsuda, S., Zauner, K., Gunji, Y.: Robot control with biological cells. BioSystems 87, 215–223 (2007)CrossRefGoogle Scholar
  14. 14.
    Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic locomotion. Robotics and Autonomous Systems 54, 641–650 (2006)CrossRefGoogle Scholar
  15. 15.
    Shirakawa, T., Gunji, Y.: Computation of voronoi diagram and collision-free path using the plasmodium of physarum polycephalum. International journal of Unconventional Computing (2008) (in press)Google Scholar
  16. 16.
    Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recognition 12, 261–268 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proceedings of the IEEE 80:99 80, 1502–1517 (1992)CrossRefGoogle Scholar
  18. 18.
    Adamatzky, A.: Developing proximity graphs by physarum polycephalum: Does the plasmodium follow toussaint hierarchy? Parallel Processing Letters (2008) (in press)Google Scholar
  19. 19.
    Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology 244, 553–564 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal model of a cell connecting amoebic motion and adaptive transport networks. Journal of Theoretical Biology 253, 659–667 (2008)CrossRefGoogle Scholar
  21. 21.
    Hickey, D.S., Noriega, L.A.: Relationship between structure and information processing in physarum polycephalum. International Journal of Modelling, Identification and Control 4, 348–356 (2008)CrossRefGoogle Scholar
  22. 22.
    Adamatzky, A.: Neural algorithm for constructing minimum spanning tree of a finite planar set. Neural Networks World 6, 335–339 (1991)Google Scholar
  23. 23.
    Kobayashi, R., Tero, A., Nakagaki, T.: Mathematical model for rhythmic protoplasmic movement in the true slime mold. Journal of Mathematical Biology 53, 273–286 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nakagaki, T., Yamada, H., Ito, M.: Reaction diffusion advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the physarum plasmodium. Journal of Theoretical Biology 197, 497–506 (1999)CrossRefGoogle Scholar
  25. 25.
    Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. International journal of Unconventional Computing (2008) (in press)Google Scholar
  26. 26.
    Jones, J.: An emergent pattern formation approach to dynamic spatial problems via quantitative front propagation and particle chemotaxis. International Journal of Unconventional Computing 4, 1–34 (2008)Google Scholar
  27. 27.
    Jones, J.: Passive vs active approaches in particle approximations of reaction-diffusion computing. Int. Journal of Nanotechnology and Molecular Computation 1, 37–63 (2009)CrossRefGoogle Scholar
  28. 28.
    Hales, T.: The honeycomb conjecture. Discrete and Computational Geometry 25, 1–22 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lobovkina, T., Dommersnes, P.G., Tiourine, S., Joanny, J.F., Orwar, O.: Shape optimization in lipid nanotube networks. The European Physical Journal E-Soft Matter 26, 295–300 (2008)CrossRefGoogle Scholar
  30. 30.
    Galton, A., Duckham, M.: What is the region occupied by a set of points? In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 81–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognition 41, 3224–3236 (2008)CrossRefzbMATHGoogle Scholar
  32. 32.
    Adamatzky, A., Jones, J.: Towards physarum robots: computing and manipulating on water surface. Journal of Bionic Engineering 5, 348–357 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jeff Jones
    • 1
  1. 1.Centre for Unconventional ComputingUniversity of the West of EnglandBristolUK

Personalised recommendations