Advertisement

Abstract Geometrical Computation and Computable Analysis

  • Jérôme Durand-Lose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)

Abstract

Extended Signal machines are proven able to compute any computable function in the understanding of recursive/computable analysis (CA), here type-2 Turing machines (T2-TM) with signed binary encoding. This relies on an intermediate representation of any real number as an integer (in signed binary) plus an exact value in ( − 1,1) which allows to have only finitely many signals present outside of the computation. Extracting a (signed) bit, improving the precision by one bit and iterating the T2-TM only involve standard signal machines.

For exact CA-computations, T2-TM have to deal with an infinite entry and to run through infinitely many iterations to produce an infinite output. This infinite duration can be provided by constructions emulating the black hole model of computation on an extended signal machine. Extracting/encoding an infinite sequence of bits is achieved as the limit of the approximation process with a careful handling of accumulations and singularities.

Keywords

Analog computation Abstract geometrical computation Computable analysis Signal machine Type-2 Turing machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. 21(1), 1–46 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: Polynomial differential equations compute all real computable functions on computable compact intervals. Journal of Complexity 23(3), 317–335 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Chadzelek, T., Hotz, G.: Analytic machines. Theoret. Comp. Sci. 219(1-2), 151–167 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Durand-Lose, J.: Abstract geometrical computation 1: Embedding black hole computations with rational numbers. Fund. Inf. 74(4), 491–510 (2006)MathSciNetzbMATHGoogle Scholar
  5. Durand-Lose, J.: Abstract geometrical computation and the linear Blum, Shub and Smale model. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 238–247. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. Durand-Lose, J.: Abstract geometrical computation with accumulations: Beyond the Blum, Shub and Smale model. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) Logic and Theory of Algorithms, 4th Conf. Computability in Europe (CiE 2008) (abstracts and extended abstracts of unpublished papers), pp. 107–116. University of Athens (2008)Google Scholar
  7. Durand-Lose, J.: Abstract geometrical computation 3: Black holes for classical and analog computing. Nat. Comput (2009), doi:10.1007/s11047-009-9117-0Google Scholar
  8. Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth space-times. Int. J. Theor. Phys. 41(2), 341–370 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Grzegorczyk, A.: On the definitions of computable real continuous functions. Fund. Math. 44, 61–77 (1957)MathSciNetzbMATHGoogle Scholar
  10. Hogarth, M.L.: Non-Turing computers and non-Turing computability. In: Biennial Meeting of the Philosophy of Science Association, pp. 126–138 (1994)Google Scholar
  11. Ko, K.-I.: Computational Complexity of Real Functions. Birkhäuser, Basel (1991)CrossRefzbMATHGoogle Scholar
  12. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265 (1936)MathSciNetzbMATHGoogle Scholar
  13. Weihrauch, K.: Introduction to computable analysis. Texts in Theoretical computer science. Springer, Berlin (2000)zbMATHGoogle Scholar
  14. Ziegler, M. (Short) survey of real hypercomputation. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 809–824. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jérôme Durand-Lose
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale d’OrléansUniversité d’OrléansORLÉANS Cedex 2France

Personalised recommendations