Random Number Selection in Self-assembly

  • David Doty
  • Jack H. Lutz
  • Matthew J. Patitz
  • Scott M. Summers
  • Damien Woods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)


We investigate methods for exploiting nondeterminism inherent within the Tile Assembly Model in order to generate uniform random numbers. Namely, given an integer range {0,...,n − 1}, we exhibit methods for randomly selecting a number within that range. We present three constructions exhibiting a trade-off between space requirements and closeness to uniformity.

The first selector selects a random number with probability Θ(1/n) using O(log2 n) tiles. The second selector takes a user-specified parameter that guarantees the probabilities are arbitrarily close to uniform, at the cost of additional space. The third selector selects a random number with probability exactly 1/n, and uses no more space than the first selector with high probability, but uses potentially unbounded space.


Tile Type Pseudorandom Generator Nondeterministic Choice Tile Assembly Model Perfect Uniformity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: STOC 2001: Proceedings of the thirty-third annual ACM Symposium on Theory of Computing, pp. 740–748. ACM, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Becker, F., Rapaport, I., Rémila, E.: Self-assembling classes of shapes with a minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Chen, H.-L., Goel, A.: Error free self-assembly with error prone tiles. In: Proceedings of the 10th International Meeting on DNA Based Computers (2004)Google Scholar
  4. 4.
    Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7(3), 347–370 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Doty, D.: Randomized self-assembly for exact shapes, Tech. Report 0901.1849, Computing Research Repository (2009)Google Scholar
  6. 6.
    Fujibayashi, K., Zhang, D.Y., Winfree, E., Murata, S.: Error suppression mechanisms for dna tile self-assembly and their simulation. Natural Computing (to appear)Google Scholar
  7. 7.
    Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Knuth, D.E.: The art of computer programming. Seminumerical algorithms, vol. 2. Addison-Wesley, Reading (1997)zbMATHGoogle Scholar
  9. 9.
    Lathrop, J.I., Lutz, J.H., Patitz, M.J., Summers, S.M.: Computability and complexity in self-assembly. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 349–358. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theoretical Computer Science 410, 384–405 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: Compact, robust programmable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Patitz, M.J., Summers, S.M.: Self-assembly of decidable sets. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008. LNCS, vol. 5204, pp. 206–219. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals (extended abstract). In: Proceedings of The Fourteenth International Meeting on DNA Computing, Prague, Czech Republic, June 2-6 (2008) (to appear)Google Scholar
  14. 14.
    Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D. thesis, University of Southern California (December 2001)Google Scholar
  15. 15.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC 2000: Proceedings of the thirty-second annual ACM Symposium on Theory of Computing, pp. 459–468. ACM, New York (2000)CrossRefGoogle Scholar
  16. 16.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sierpinski triangles. PLoS Biology 2(12) (2004)Google Scholar
  17. 17.
    Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biology 99, 237–247 (1982)CrossRefGoogle Scholar
  18. 18.
    Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 305–324. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal on Computing 36(6), 1544–1569 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    LaBean, T.H., Majumder, U., Sahu, S., Reif, J.H.: Design and simulation of self-repairing DNA lattices. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 195–214. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    von Neumann, J.: Various techniques for use in connection with random digits. In: von Neumann’s Collected Works, vol. 5, pp. 768–770. Pergamon, Oxford (1963)Google Scholar
  22. 22.
    Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)Google Scholar
  23. 23.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Doty
    • 1
  • Jack H. Lutz
    • 1
  • Matthew J. Patitz
    • 1
  • Scott M. Summers
    • 1
  • Damien Woods
    • 2
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA
  2. 2.Department of Computer Science & Artificial IntelligenceUniversity of SevilleSpain

Personalised recommendations