Advertisement

Networks of Evolutionary Picture Processors with Filtered Connections

  • Paolo Bottoni
  • Anna Labella
  • Florin Manea
  • Victor Mitrana
  • Jose M. Sempere
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)

Abstract

In this paper we simplify the model of computation considered in [1], namely network of evolutionary picture processors, by moving the filters from the nodes to the edges. Each edge is now viewed as a two-way channel such that input and output filters, respectively, of the two nodes connected by the edge coincide. Thus, the possibility of controlling the computation in such networks seems to be diminished. In spite of this observation all the results concerning the computational power of networks of evolutionary picture processors reported in [1] are extended over these simplified networks.

Keywords

Output Node Input Node Evolutionary Rule Underlying Graph Communication Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bottoni, P., Labella, A., Mitrana, V., Sempere, J.: Networks of evolutionary picture processors (submitted)Google Scholar
  2. 2.
    Bottoni, P., Labella, A., Manea, F., Mitrana, V., Sempere, J.: Filter position in networks of evolutionary processors does not matter: a direct proof. In: The 15th International Meeting on DNA Computing and Molecular Programming (in press)Google Scholar
  3. 3.
    Drăgoi, C., Manea, F., Mitrana, V.: Accepting networks of evolutionary processors with filtered connections. Journal of Universal Computer Science 13, 1598–1614 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Drăgoi, C., Manea, F.: On the descriptional complexity of accepting networks of evolutionary processors with filtered connections. International Journal of Foundations of Computer Science 19, 1113–1132 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In: Artificial Intelligence and Information-Control Systems of Robots 1994, pp. 31–40. World Scientific, Singapore (1994)Google Scholar
  6. 6.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: [13], pp. 215–267Google Scholar
  7. 7.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern Recognition and Artificial Intelligence 6, 241–256 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  9. 9.
    Inoue, I., Takanami, I.: A survey of two-dimensional automata theory. In: Dassow, J., Kelemen, J. (eds.) IMYCS 1988. LNCS, vol. 381, pp. 72–91. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  10. 10.
    Margenstern, M., Mitrana, V., Jesús Pérez-Jímenez, M.: Accepting hybrid networks of evolutionary processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Manea, F., Martin-Vide, C., Mitrana, V.: On the size complexity of universal accepting hybrid networks of evolutionary processors. Mathematical Structures in Computer Science 17, 753–771 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Martín-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and perspectives. In: Molecular Computational Models: Unconventional Approaches, pp. 78–114. Idea Group Publishing, Hershey (2005)CrossRefGoogle Scholar
  13. 13.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paolo Bottoni
    • 1
  • Anna Labella
    • 1
  • Florin Manea
    • 2
  • Victor Mitrana
    • 2
    • 3
  • Jose M. Sempere
    • 3
  1. 1.Department of Computer Science“Sapienza” University of RomeRomeItaly
  2. 2.Faculty of MathematicsUniversity of BucharestBucharestRomania
  3. 3.Department of Information Systems and ComputationTechnical University of ValenciaValenciaSpain

Personalised recommendations