Turing Completeness Using Three Mobile Membranes

  • Bogdan Aman
  • Gabriel Ciobanu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)


The mutual mobile membrane systems represent a variant of mobile membrane systems in which the endocytosis and exocytosis work whenever the involved membranes “agree” on the movement (this agreement is described by using dual objects a and \(\overline{a}\) in the involved membranes). We study the computational power of this variant of mobile membrane systems, proving that only three membranes are enough to get the same computational power as a Turing machine.


Turing Machine Register Machine Membrane Computing Skin Membrane Mobile Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 5th edn. Garland Science. Taylor & Francis, Abington (2008)Google Scholar
  2. 2.
    Aman, B., Ciobanu, G.: Describing the Immune System Using Enhanced Mobile Membranes. Electronic Notes in Theoretical Computer Science 194, 5–18 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aman, B., Ciobanu, G.: Simple, Enhanced and Mutual Mobile Membranes. In: Transactions on Computational Systems Biology. Springer, Heidelberg (to appear, 2009)Google Scholar
  4. 4.
    Cardelli, L.: Brane Calculi - Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Cardelli, L., Păun, G.: An Universality Result for a (Mem)Brane Calculus Based on Mate/Drip Operations. International Journal of Foundations of Computer Science 17, 49–68 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  7. 7.
    Freund, R., Păun, G.: On the Number of Non-terminals in Graph-Controlled, Programmed, and Matrix Grammars. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 214–225. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Krishna, S.N.: The Power of Mobility: Four Membranes Suffice. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 242–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Krishna, S.N., Ciobanu, G.: On the Computational Power of Enhanced Mobile Membranes. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 326–335. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Krishna, S.N., Păun, G.: P Systems with Mobile Membranes. Natural Computing 4, 255–274 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Minsky, M.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  12. 12.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic Press, London (1980)zbMATHGoogle Scholar
  14. 14.
    Salomaa, A.: Formal Languages. Academic Press, London (1973)zbMATHGoogle Scholar
  15. 15.
    Schroeppel, R.: A Two Counter Machine Cannot Calculate 2N. Massachusetts Institute of Technology, A.I. Laboratory, Artificial Intelligence Memo #257 (1972)Google Scholar
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bogdan Aman
    • 1
  • Gabriel Ciobanu
    • 1
  1. 1.Romanian Academy, Institute of Computer ScienceIaşi A.I. Cuza University of IaşiRomania

Personalised recommendations