Advertisement

Relativistic Computers and Transfinite Computation

  • Philip D. Welch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)

Abstract

(1) Simple models in Malament-Hogarth spacetimes, up to \(\Delta^1_1\) or HYP.

(2) Ordinal Time Register Machines: up to \(\Pi^1_1\)- Open image in new window .

(3) Infinite Time Turing Machines: up to \(\Pi^1_2\)- Open image in new window Det(\(\Sigma^0_2)\) and beyond.

In this paper we survey some of the complexity issues surrounding discrete models of transfinite recursion. We emphasise today the connections with Proof Theory, Reverse Mathematics, and Subsystems of Second Order Number Theory as set forth in Simpson’s [13]. Our concerns are thus mainly the logico-mathematical ones of analysing such models rather ‘implementational concerns’ (to put it broadly).

Keywords

Turing Machine Path Tree Limit Stage Ordinal Rank Reverse Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Earman, J., Norton, J.D.: Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes. Philosophy of Science 60, 22–42 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth space-times. International Journal of Theoretical Physics 41(2), 341–370 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic Logic 65(2), 567–604 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hogarth, M.: Does general relativity allow an observer to view an eternity in a finite time? Foundations of Physics Letters 5(2), 173–181 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hogarth, M.: Non-Turing computers and non-Turing computability. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, vol. 1, pp. 126–138 (1994)Google Scholar
  7. 7.
    Hogarth, M.: Deciding arithmetic using SAD computers. British Journal for the Philosophy of Science 55, 681–691 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Koepke, P., Miller, R.: An enhanced theory of infinite time register machines. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 306–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Pitowsky, I.: The physical Church-Turing thesis and physical computational complexity. Iyyun 39, 81–99 (1990)Google Scholar
  10. 10.
    Rathjen, M.: An ordinal analysis of parameter-free \(\Pi^{1}_{2}\) comprehension. Archive for Mathematical Logic 44(3), 263–362 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rathjen, M.: An ordinal analysis of stability. Archive for Mathematical Logic 44(1), 1–62 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shepherdson, J., Sturgis, H.: Computability of recursive functionalsGoogle Scholar
  13. 13.
    Simpson, S.: Subsystems of second order arithmetic. Perspectives in Mathematical Logic. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Welch, P.D.: Eventually infinite time Turing degrees: infinite time decidable reals. Journal for Symbolic Logic 65(3), 1193–1203 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Welch, P.D.: Turing Unbound: The extent of computations in Malament-Hogarth spacetimes. British J. for the Philosophy of Science, 15 (December 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Philip D. Welch
    • 1
  1. 1.School of MathematicsUniversity of BristolEngland

Personalised recommendations