Skip to main content

Non-strongly Stable Orders Also Define Interesting Simulation Relations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5728))

Abstract

We present a study of the notion of coalgebraic simulation introduced by Hughes and Jacobs. Although in their original paper they allow any functorial order in their definition of coalgebraic simulation, for the simulation relations to have good properties they focus their attention on functors with orders which are strongly stable. This guarantees a so-called “composition-preserving” property from which all the desired good properties follow. We have noticed that the notion of strong stability not only ensures such good properties but also “distinguishes the direction” of the simulation. For example, the classic notion of simulation for labeled transition systems, the relation “p is simulated by q”, can be defined as a coalgebraic simulation relation by means of a strongly stable order, whereas the opposite relation, “p simulates q”, cannot. Our study was motivated by some interesting classes of simulations that illustrate the application of these results: covariant-contravariant simulations and conformance simulations.

Research supported by the Spanish projects DESAFIOS TIN2006-15660-C02-01, WEST TIN2006-15578-C02-01, PROMESAS S-0505/TIC/0407 and UCM-BSCH GR58/08/910606.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P., Mendler, N.P.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  2. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Frutos-Escrig, D., Gregorio-Rodríguez, C.: Universal coinductive characterisations of process semantics. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, C.-H.L. (eds.) IFIP TCS. IFIP, vol. 273, pp. 397–412. Springer, Heidelberg (2008)

    Google Scholar 

  4. de Frutos Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of semantics for processes: observational semantics. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 279–290. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation as a congruence. Inf. Comput. 100(2), 202–260 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hughes, J., Jacobs, B.: Simulations in coalgebra. TCS 327(1-2), 71–108 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jacobs, B., Hughes, J.: Simulations in coalgebra. In: Gumm, H.P. (ed.) CMCS 2003: 6th International Workshop on Coalgebraic Methods in Computer Science, vol. 82 (2003)

    Google Scholar 

  8. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leduc, G.: A framework based on implementation relations for implementing LOTOS specifications. Computer Networks and ISDN Systems 25(1), 23–41 (1992)

    Article  MATH  Google Scholar 

  10. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms. In: Sixth Annual ACM Symposium on Principles of Distributed Computing, pp. 137–151 (1987)

    Google Scholar 

  11. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  12. Tretmans, J.: Conformance testing with labelled transition systems: Implementation relations and test generation. Computer Networks and ISDN Systems 29(1), 49–79 (1996)

    Article  Google Scholar 

  13. van Glabbeek, R.J.: The linear time-branching time spectrum I: The semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of process algebra, pp. 3–99 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fábregas, I., de Frutos Escrig, D., Palomino, M. (2009). Non-strongly Stable Orders Also Define Interesting Simulation Relations. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03741-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03740-5

  • Online ISBN: 978-3-642-03741-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics