Models for Asymmetry in Proximity Data

  • Giuseppe BoveEmail author
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Geometrical models to explore and represent asymmetric proximity data are usually classified in two classes: distance models and scalar product models. In this paper we focalize on scalar product models, emphasizing some relationships and showing possibilities to incorporate external information that can help the analysis of proximities between rows and columns of data matrices. In particular it is pointed out how some of these models apply to the analysis of skew-symmetry with external information.


Diagonal Entry Positive Semidefinite External Information Residual Term Distance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bailey, R. A., & Gower J. C. (1990). Approximating a symmetric matrix. Psychometrika, 55, 665–675.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Bove, G. (2006). Approaches to asymmetric multidimensional scaling with external information. In S. Zani, A. Cerioli, et al. (Eds.), Data analysis, classification and the forward search (pp. 69–76). Berlin: Springer.CrossRefGoogle Scholar
  3. Chino, N. (1978). A graphical technique for representing asymmetric relationships between N objects. Behaviormetrika, 5, 23–40.CrossRefGoogle Scholar
  4. Chino, N. (1990). A generalized inner product model for the analysis of asymmetry. Behaviormetrika, 27, 25–46.CrossRefGoogle Scholar
  5. De Leeuw, J., & Heiser, W. J. (1982). Theory of multidimensional scaling. In P. R. Krishnaiah & L. N. Kanal (Eds.), Handbook of statistics (Vol. 2, pp. 285–316). Amsterdam: North Holland.Google Scholar
  6. Escoufier, Y., & Grorud, A. (1980). Analyse factorielle des matrices carrées non-symétriques. In E. Diday et al. (Eds.), Data analysis and informatics (pp. 263–276). Amsterdam: North Holland.Google Scholar
  7. Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Gower, J. C. (1977). The analysis of asymmetry and orthogonality. In J. R. Barra et al. (Eds.), Recent developments in statistics (pp. 109–123). Amsterdam: North Holland.Google Scholar
  9. Harshman, R. A. (1978). Models for analysis of asymmetrical relationships among N objects or stimuli. In Paper presented at the first joint meeting of the Psychometric Society and the Society for Mathematical Psychology, McMaster University, Hamilton, Ontario.Google Scholar
  10. Kiers, H. A. L., & Takane, Y. (1994). A generalization of GIPSCAL for the analysis of nonsymmetric data. Journal of Classification, 11, 79–99.zbMATHCrossRefGoogle Scholar
  11. Okada, A., & Imaizumi, T. (1987). Nonmetric multidimensional scaling of asymmetric proximities. Behaviormetrika, 21, 81–96.CrossRefGoogle Scholar
  12. Rocci, R. (2004). A general algorithm to fit constrained DEDICOM models. SMA-Journal of the Italian Statistical Society, 13, 139–150.zbMATHMathSciNetGoogle Scholar
  13. Rocci, R., & Bove, G. (2002). Rotation techniques in asymmetric multidimensional scaling. Journal of Computational and Graphical Statistics, 11, 405–419.CrossRefMathSciNetGoogle Scholar
  14. Ten Berge, J. M. F., & Kiers, H. A. L. (1993). An alternating least squares method for the weighted approximation of a symmetric matrix. Psychometrika, 58, 115–118.CrossRefGoogle Scholar
  15. Ter Braak, C. J. F. (1992). Multidimensional scaling and regression. Statistica Applicata, 4, 577–586.Google Scholar
  16. Zielman, B., & Heiser, W. J. (1996). Models for asymmetric proximities. British Journal of Mathematical and Statistical Psychology, 49, 127–146.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Dipartimento di Scienze dell’EducazioneUniversità degli Studi Roma TreRomeItaly

Personalised recommendations