Modelling Network Data: An Introduction to Exponential Random Graph Models

  • Susanna ZaccarinEmail author
  • Giulia Rivellini
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


A brief introduction to statistical models for complete network data is presented. An example is provided by the collaboration network of Italian scholars on Population Studies.


Collaboration Network Italian Scholar High Order Model Social Network Data Exponential Random Graph Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Boer, P., Huisman, M., Snijders, T. A. B., Wichers, L. H. Y., & Zeggelink, E. (2006). StOCNET: An open software system for the advanced anlysis of social networks. Version 1.7. Groningen: ICS/Science Plus.Google Scholar
  2. Frank, O., & Strauss, D. (1986). Markov graphs. Journal of American Statistical Association, 81, 832–842.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Handcock, M., Hunter, D., Butts, C., Goodreu, S., & Morris, M. (2008). statnet: Software tools for the representation, visualizations, analysis and simulation of network data. Journal of Statistical Software, 24. Retrieved from
  4. Lubbers, M. J., & Snijders, T. A. B. (2007). A comparison of various approaches to the exponential random graph model: A reanalysis of 102 student networks in school classes. Social Networks, 29, 489–507.CrossRefGoogle Scholar
  5. Pattison, P., & Robins, G. (2002). Neighbourhood-based models for social network. Sociological Methodology, 32, 301–337.CrossRefGoogle Scholar
  6. Rivellini, G., & Zaccarin, S. (2007). I modelli statistici nell’analisi di rete: evoluzione e utilizzo. In A. Salvini (Ed.), Analisi delle reti sociali. Teorie, metodi, applicazioni (pp. 141–173). Milan: Franco Angeli.Google Scholar
  7. Rivellini, G., Rizzi, E., & Zaccarin, S. (2006). Science network in Italian population research: An analysis according the social network perspective. Scientometrics, 67, 407–418.Google Scholar
  8. Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p ∗ ) models for social networks. Social Networks, 29, 173–191.CrossRefGoogle Scholar
  9. Robins, G., Snijders, T. A. B., Wang, P., Handock, M., & Pattison, P. (2007). Recent developments in exponential random graph (p ∗ ) models for social networks. Social Networks, 29, 192–215.CrossRefGoogle Scholar
  10. Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure, 3(2), 1–40.MathSciNetGoogle Scholar
  11. Snijders, T. A. B., Pattison, P., Robins, G., & Handcock, M. (2006). New specifications for exponential random graph models. Sociological Methodology, 36, 99–153.CrossRefGoogle Scholar
  12. Terzera, L., & Rivellini, G. (2006). The analysis of the most recent national workshops on Italian population studies according a network perspective. In EPC, poster session.Google Scholar
  13. Wasserman, S., & Faust, K. (1994). Social network analysis. Methods and application. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Università di TriesteTriesteItaly

Personalised recommendations