Advertisement

The Effectiveness of University Education: A Structural Equation Model

  • Bruno Chiandotto
  • Bruno Bertaccini
  • Roberta VarrialeEmail author
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

The evaluation of the effectiveness of higher education is a crucial aspect of competitiveness of modern economies. In this contribution we investigate the quality and effectiveness of higher education in Italy using a structural equation model; in particular, we evaluate the performance of the university system from the users’ point of view, both immediately following (internal effectiveness), and one year after (external effectiveness), the completion of the degree. The model allows the construction of synthetic indexes and hence the ranking of study programs.

References

  1. Bartholomew, D. J., & Knott, M. (1999). Latent variable models and factor analysis. London: Arnold.zbMATHGoogle Scholar
  2. Bayol, M. P., de la Foye, A., Tellier, C., & Tenenhaus, M. (2000). Use of PLS path modelling to estimate the European consumer satisfaction index (ECSI) model. Statistica Applicata, 12, 361–375.Google Scholar
  3. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.zbMATHGoogle Scholar
  4. Chiandotto, B. (2004). Sulla misura della qualitá della formazione universitaria. Studi e note di Economia, 3, 27–61.Google Scholar
  5. Chiandotto, B., Bini, M., & Bertaccini, B. (2007). Quality assessment of the University Educational Process: An application of the ECSI model. In Effectiveness of the University Education in Italy. Heidelberg: Physica.Google Scholar
  6. Draper, D., & Gittoes, M. (2004). Statistical analysis of performance indicators in UK higher education. Journal of the Royal Statistical Society A, 167(3), 449–474.CrossRefMathSciNetGoogle Scholar
  7. ECSI Technical Committee. (1998). European customer satisfaction index: Foundation and structure for harmonized national pilot projects. Report prepared for the ECSI Steering Committee.Google Scholar
  8. Eskildsen, J. K., Martensen, A., Gronholdt, L., & Kristensen, K. (2000). Benchmarking student satisfaction in higher education based on the ECSI methodology. Sinergie Rapporti di Ricerca, 9, 385–400.Google Scholar
  9. Fornell, C. (1992). A national customer satisfaction barometer: The Swedish experience. Journal of Marketing, 56, 6–22.CrossRefGoogle Scholar
  10. Hox, J. J., & Bechger, T. M. (1998). An introduction to structural equation modeling. Family Science Review, 11, 354–373.Google Scholar
  11. Lockheed, M. E., & Hanushek, E. R. (1994). Concepts of educational efficiency and effectiveness. In T. Husen & T. N. Postlethwaite (Eds.), International encyclopedia of education (pp. 1779–1784). Oxford: Pergamon.Google Scholar
  12. Martensen, A., Gronholdt, L., Eskildsen, J. K., & Kristensen, K. (2000). Measuring student oriented quality in higher education: Application of the ECSI methodology. Sinergie Rapporti di Ricerca, 9, 371–383.Google Scholar
  13. Muthén, L. K., & Muthén, B. O. (1998–2007). Mplus users guide (5th edition). Los Angeles, CA: Muthén and Muthén.Google Scholar
  14. O’Loughlin C., & Coenders G. (2002). Application of the European customer satisfaction index to postal services. Structural equation models versus partial least squares. Departament d’Economia, Universitat de Girona.Google Scholar
  15. Pearl, J. (2000). Causality: Models, reasoning, and inference. New York: Cambridge University Press.zbMATHGoogle Scholar
  16. Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling Anders. Boca Raton: Chapman and Hall.CrossRefGoogle Scholar
  17. Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction and search (2nd edition). Massachusetts, CA: The MIT press.Google Scholar
  18. Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48, 159–205.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Wold, H. (1985). Partial least squares. In S. Kotz & N. L. Johnson (Eds.), Encyclopedia of statistical sciences (Vol. 6, pp. 581–591). New York: Wiley.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bruno Chiandotto
  • Bruno Bertaccini
  • Roberta Varriale
    • 1
    Email author
  1. 1.Dip.to di Statistica ‘G. Parenti’Università degli Studi di FirenzeFirenzeItaly

Personalised recommendations