Advertisement

Preserving the Clustering Structure by a Projection Pursuit Approach

  • Giovanna MenardiEmail author
  • Nicola Torelli
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

A projection pursuit technique to reduce the dimensionality of a data set preserving the clustering structure is proposed. It is based on Silverman’s (J R Stat Soc B 43:97–99, 1981) critical bandwidth. We show that critical bandwidth is scale equivariant and this property allows us to keep affine invariance of the projection pursuit solution.

References

  1. Azzalini, A., & Torelli, N. (2007). Clustering via nonparametric density estimation. Statistical Computing, 17, 71–80.CrossRefMathSciNetGoogle Scholar
  2. Cook, D., Buja, A., Cabrera, J., & Hurley, C. (1995). Gran tour and projection pursuit. Journal of Computational and Graphical Statistics, 4, 155–172.CrossRefGoogle Scholar
  3. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.Google Scholar
  4. Forina, M., Armanino, C., Lanteri, S., & Tiscornia, E. (1983). Classication of olive oils from their fatty acid composition. In H. Martens & H. Russwurm Jr. (Eds.), Food research and data analysis (pp. 189–214). London: Applied Science.Google Scholar
  5. Friedman, J. H. (1987). Exploratory projection pursuit. Journal of American Statistical Association, 82, 249–266.zbMATHCrossRefGoogle Scholar
  6. Hall, P. (1989). Polynomial projection pursuit. Annals of Statistics, 17, 589–605.zbMATHCrossRefMathSciNetGoogle Scholar
  7. Hartigan, J. A. (1975). Clustering algorithms. New York: Wiley.zbMATHGoogle Scholar
  8. Hartigan, J. A., & Hartigan, P. M. (1985). The dip test of unimodality. Annals of Statistics, 13, 70–84.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Huber, P. J. (1985). Projection pursuit. Annals of Statistics, 13, 435–475.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.CrossRefGoogle Scholar
  11. Krause, A., & Liebscher, V. (2005). Multimodal projection pursuit using the dip statistic, Preprint-Reihe Mathematik, 13.Google Scholar
  12. Montanari, A., & Guglielmi, N. (1994). Exploratory projection pursuit maximizing departure from unimodality. In Proc. XXXVII Riun. Scient. Soc. Ital. Stat. (pp. 245–251).Google Scholar
  13. Montanari, A., & Lizzani, L. (1998). Projection pursuit and departure from unimodality. Metron, 56, 139–153.zbMATHMathSciNetGoogle Scholar
  14. Müller, D. W., & Sawitzki, G. (1992). Excess mass estimates and test for multimodality. Journal of American Statistical Association, 86, 738–746.CrossRefGoogle Scholar
  15. Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society: Series B, 43, 97–99.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Economics and StatisticsTriesteItaly

Personalised recommendations