Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 243))

  • 1743 Accesses

Abstract

This paper presents a model-based control design for an integrated vehicle system in which several active components are operated in co-operation. In control-oriented modeling vehicle dynamics is augmented with the performance specifications of the controlled system and the uncertainties of the model. In control design performance specifications must be formalized in such a way that the performance demands are guaranteed, conflicts between performances are achieved and a priority between different actuators is created and various fault information is taken into consideration. As an illustration an integrated control, which includes an active steering, active anti-roll bars and an active brake system, is proposed for tracking the path of the vehicle and guaranteeing road holding and roll stability. In the paper the operations of the integrated vehicle systems are presented in simulated vehicle maneuvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alleyne, A., Liu, R.: A Simplified Approach to Force Control for Electro-Hydraulic Systems. Control Engineering Practice 8, 1347–1356 (2000)

    Article  Google Scholar 

  2. Alvarez, L., Horowitz, R.: Safe Platooning in Automated Highway Systems. Vehicle System Dynamics, pp. 23–84 (1999)

    Google Scholar 

  3. Balas, G., Doyle, J.: Robustness and Performance Tradeoffs in Control Design for Flexible Structures. IEEE Transactions on Control Systems Technology 2(4), 352–361 (1994)

    Article  Google Scholar 

  4. Balas, G., Fialho, I., Lee, L., Nalbantoglu, V., Packard, A., Tan, W., Wolodkin, G., Wu, F.: Theory and Application of Linear Parameter Varying Control Techniques. In: Proc. of the American Control Conference (1997)

    Google Scholar 

  5. Becker, G., Packard, A.: Robust Performance of Linear Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback. System Control Letters 23, 205–215 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bemporad, A.: Modeling, Control and Reachability Analysis of Discrete-Time Hybrid Systems. PhD Thesis, Department of Information Engineering, University of Siena (2003)

    Google Scholar 

  7. Bokor, J., Balas, G.: Linear Parameter Varying Systems: A Geometric Theory and Applications. In: 16th IFAC World Congress, Prague (2005)

    Google Scholar 

  8. Cebon, D.: Interaction between Heavy Vehicles and Roads. SAE-SP 951 (1993)

    Google Scholar 

  9. Chen, J., Patton, R.: Robust Model-based Fault Diagnosis for Dynamics Systems. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  10. Fischer, D., Isermann, R.: Mechatronic Semi-Active and Active Vehicle Suspensions. Control Engineering Practice (2004)

    Google Scholar 

  11. Freriksson, J., Egardt, B.: Nonlinear Control Applied to Gearshifting in Automated Manual Transmissions. In: Proc. Conference on Decision and Control, Sydney (2000)

    Google Scholar 

  12. Gahinet, P., Apkarian, P.: A linear Matrix Inequality Approach to H ∞  Control. International Journal of Robust and Nonlinear Control 4, 421–448 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gertler, J.: Fault Detection and Isolation Using Parity Relations. Control Engineering Practice 5(5), 653–661 (1997)

    Article  Google Scholar 

  14. Gillespie, T.: Fundamentals of Vehicle Dynamics. Society of Automotive Engineers Inc. (1992)

    Google Scholar 

  15. Gordon, T., Howell, M., Brandao, F.: Integrated Control Methodologies for Road Vehicles. Vehicle System Dynamics 40, 157–190 (2003)

    Article  Google Scholar 

  16. Gáspár, P., Szabó, Z., Bokor, J.: Brake Control Combined with Prediction to Prevent the Rollover of Heavy Vehicles. In: Proc. of the IFAC World Congress, Praha (2005)

    Google Scholar 

  17. Gáspár, P., Szabó, Z., Bokor, J.: Continuous-Time Parameter Identification Using Adaptive Observers for LPV Models with Vehicle Dynamics Applications. In: Robust Control Conference, Toulouse (2006)

    Google Scholar 

  18. Gáspár, P., Szabó, Z., Bokor, J.: The Design of a Two-Level Controller for Suspension Systems. In: IFAC World Congress, Seoul, Korea (2008)

    Google Scholar 

  19. Hirano, Y., Harada, H., Ono, E., Takanami, K.: Development of an Integrated System of 4WS and 4WD by H ∞  Control. SAE Journal, 79–86 (1993)

    Google Scholar 

  20. Kiencke, U.: Integrated Vehicle Control Systems. In: Proc. of the Intelligent Components for Autonomous and Semi-Autonomous Vehicle, Tolouse, pp. 1–5 (1995)

    Google Scholar 

  21. Massoumnia, M.A.: A Geometric Approach to the Synthesis of Failure Detection Filters. IEEE Transactions on Automatic Control AC-31(9), 839–846 (1986)

    Article  MathSciNet  Google Scholar 

  22. Mastinu, G., Babbel, E., Lugner, P., Margolis, D.: Integrated Controls of Lateral Vehicle Dynamics. Vehicle System Dynamics 23, 358–377 (1994)

    Article  Google Scholar 

  23. Nagai, M., Hirano, Y., Yamanaka, S.: Intergated Robust Control of Active Rear Wheel Steering and Direct Yaw Moment Control. Vehicle System Dynamics 28, 416–421 (1998)

    Article  Google Scholar 

  24. Palkovics, L., Fries, A.: Intelligent Electronic Systems in Commercial Vehicles for Enhanced Traffic Safety. Vehicle System Dynamics 35, 227–289 (2001)

    Article  Google Scholar 

  25. Poussot-Vassal, C., Sename, O., Dugard, L., Gáspár, P., Szabó, Z., Bokor, J.: Attitude and Handling Improvements Trough Gain-scheduled Suspensions and Brakes Control. In: IFAC World Congress, Seoul (2008)

    Google Scholar 

  26. Rajamani, R.: Vehicle Dynamics and Control. Springer, Heidelberg (2005)

    Google Scholar 

  27. Rough, W., Shamma, J.: Research on Gain Scheduling. Automatica 36, 1401–1425 (2000)

    Article  Google Scholar 

  28. Sampson, D., Cebon, D.: Active Roll Control of Single Unit Heavy Road Vehicles. Vehicle System Dynamics 40, 229–270 (2003)

    Article  Google Scholar 

  29. Song, C., Uchanski, M., Hedrick, J.: Vehicle Speed Estimation Using Accelerometer and Wheel Speed Measurements. In: Proc. of the SAE Automotive Transportation Technology, Paris (2002)

    Google Scholar 

  30. Stoustrup, J., Niemannn, H.: Fault Detection for Nonlinear Systems - a Standard Problem Approach. In: Proc. of the Conference on Decision and Control, Tampa, pp. 96–101 (1998)

    Google Scholar 

  31. Swaroop, D.: String Stability of Interconnected Systems: An Application to Platooning in Automated Highway Systems. Research Report of PATH: Paper UCB-ITS-PRR-97-14 (1997)

    Google Scholar 

  32. Szabó, Z., Bokor, J., Balas, G.: Inversion of LPV Systems and its Application to Fault Detection. In: Proc. of the Safeprocess-2003, Washington, USA (2003)

    Google Scholar 

  33. Trachtler, A.: Integrated Vehicle Dynamics Control Using Active Brake, Steering and Suspension Systems. International Journal of Vehicle Design 36, 1–12 (2004)

    Article  Google Scholar 

  34. Tóth, R., Heuberger, P., den Hof, P.V.: Crucial Aspects of Zero-Order Hold LPV State-Space System Discretization. In: IFAC World Congress, Seoul, Korea (2008)

    Google Scholar 

  35. Wu, F.: Control of Linear Parameter Varying Systems. PhD Thesis, Mechanical Engineering, University of California at Berkeley (1995)

    Google Scholar 

  36. Wu, F., Yang, X., Packard, A., Becker, G.: Induced L2 Norm Controller for LPV Systems with Bounded Parameter Variation Rates. International Journal of Robust and Nonlinear Control 6, 983–988 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zin, A., Sename, O., Gáspár, P., Dugard, L., Bokor, J.: An LPV/Hinf Active Suspension Control for Global Chassis Technology, Design and Performance Analysis. Vehicle System Dynamics, 889–912 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gáspár, P. (2009). Model-Based Control Design of Integrated Vehicle Systems. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds) Towards Intelligent Engineering and Information Technology. Studies in Computational Intelligence, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03737-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03737-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03736-8

  • Online ISBN: 978-3-642-03737-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics