Skip to main content

New Trends in Robotic Reinforcement Learning: Single and Multi-robot Case

  • Chapter
Towards Intelligent Engineering and Information Technology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 243))

  • 1717 Accesses

Abstract

A rather general approach to learning control is the framework of Reinforcement Learning, described in this chapter. Reinforcement learning offers one of the most general framework to take traditional robotics towards true autonomy and versatility. Single robot reinforcement learning as well as Multi-robot reinforcement learning are a very challenging areas due to several issues, such as large state spaces, difficulty in reward assignment, nondeterministic action selections, and difficulty in merging learned experiences from other robots. There are still many difficulties in application iof robotics reinforcement learning and in scaling up the multi agent reinforcement learning to multi-robot systems. After reviewing important approaches in this field, some problems and promising research directions will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  2. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  3. Watkins, C.J.C.H., Dayan, P.: Q Learning. Machine Learning, 279–292 (1992)

    Google Scholar 

  4. Benbrahim, H., Franklin, J.A.: Biped Dynamic Walking using Reinforcement Learning. Robotics and Autonomous Systems 22, 283–302 (1997)

    Article  Google Scholar 

  5. Nguyen-Tuong, D., Peters, J.: Local Gaussian Process Regression for Real-time Model-based Robot Control. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008)

    Google Scholar 

  6. Peters, J., Schaal, S.: Learning to Control in Operational Space. International Journal of Robotics Research 27, 197–212 (2008)

    Article  Google Scholar 

  7. Bakker, B., Zhumatiy, V., Gruener, G., Schmidhuber, J.: A Robot that Reinforcement-Learns to Identify and Memorize Important Previous Observations. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 430–435 (2003)

    Google Scholar 

  8. Bakker, B., Schmidhuber, J.: Hierarchical Reinforcement Learning Based on Automatic Discovery of Subgoals and Specialization of Subpolicies. In: Proc. of the 2003 European Workshop on Reinforcement Learning, Nancy, France (2003)

    Google Scholar 

  9. Mori, T., Nakamura, Y., Sato, M., Ishii, S.: Reinforcement Learning for a CPG-driven Biped Robot. In: Proc. of the Nineteenth National Conference on Artificial Intelligence (AAAI), pp. 623–630 (2004)

    Google Scholar 

  10. Nakamura, Y., Sato, M., Ishii, S.: Reinforcement Learning for Biped Robot. In: Proc. of International Symposium on Adaptive Motion of Animals and Machines (2003)

    Google Scholar 

  11. Peters, J., Vijayakumar, S.M., Schaal, S.: Reinforcement Learning for Humanoid Robotics. In: Proc. of Third IEEE-RAS International Conference on Humanoid Robots, Karlsruhe, Germany (2003)

    Google Scholar 

  12. Tedrake, R., Zhang, T.W., Seung, H.S.: Stochastic Policy Gradient Reinforcement Learning on a Simple 3d Biped. In: Proc. of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (2004)

    Google Scholar 

  13. Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPG-based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot. International Journal of Robotics Research 27, 213–228 (2008)

    Article  Google Scholar 

  14. Lee, J., Oh, J.H.: Walking Pattern Generation for Planar Biped Walking Using Q-learning. In: Proc. of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, pp. 3027–3032 (2008)

    Google Scholar 

  15. Shibata, T., Hitomoi, K., Nakamura, Y., Ishii, S.: Reinforcement Learning of Stable Trajectory for Quasi-Passive Dynamic Walking of an Unstable Biped Robot. In: Hackel, M. (ed.) Humanoid Robots: Human-like Machines, Itech, Vienna, Austria, pp. 211–226 (2007)

    Google Scholar 

  16. Katić, D., Vukobratović, M.: Reinforcement Learning Algorithms in Humanoid Robotics. In: de Pina Filho, A.C. (ed.) Humanoid Robots: New Developments, Advanced Robotic Systems International and I-Tech, Vienna, pp. 367–400 (2007)

    Google Scholar 

  17. Katic, D., Rodic, A., Vukobratovic, M.: Hybrid Dynamic Control Algorithm For Humanoid Robots Based on Reinforcement Learning. J. of Intelligent and Robotic Systems 51, 3–30 (2008)

    Article  Google Scholar 

  18. Katic, D., Rodić, A.: Dynamic Control Algorithm for Biped Walking Based on Policy Gradient Fuzzy Reinforcement Learning. In: Proc. of the 17th IFAC World Congress, Seoul, Republic of Corea (2008)

    Google Scholar 

  19. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: A Framework for Learning Biped Locomotion with Dynamic Movement Primitives. In: Proc. of IEEE-RAS/RSJ International Conference on Humanoid Robots, Los Angeles, USA (2004)

    Google Scholar 

  20. Peters, J., Schaal, S.: Policy Gradient Methods for Robotics. In: Proc. of the IEEE International Conference on Intelligent Robotics Systems, Beijing, China (2006)

    Google Scholar 

  21. Parker, L.E.: Distributed Intelligence: Overview of the Field and its Application in Multi-Robot Systems. J. of Physical Agents 2, 5–14 (2008)

    Google Scholar 

  22. Yang, E., Gu, D.: Multiagent Reinforcement Learning for Multi-Robot Systems: A Survey. Technical Report CSM-404, Department of Computer Science, University of Essex (2004)

    Google Scholar 

  23. Park, K.H., Kim, Y.J., Kim, J.H.: Modular Q-Learning-based Multi-Agent Cooperation for Robot Soccer. Robotics and Autonomous Systems 35, 109–122 (2001)

    Article  MATH  Google Scholar 

  24. Touzet, C.F.: Distributed Lazy Q-Learning for Cooperativemobile Robots. International Journal of Advanced Robotic Systems 1, 5–13 (2004)

    Google Scholar 

  25. Stone, P., Veloso, M.: Multiagent Systems: a Survey from a Machine Learning Perspective. Autonomous Robots 8, 345–383 (2000)

    Article  Google Scholar 

  26. Mataric, M.J.: Reinforcement Learning in the Multi-Robot Domain. Autonomous Robots 4, 73–83 (1997)

    Article  Google Scholar 

  27. Mataric, M.J.: Learning in Behavior-based Multi-Robot Systems: Policies, Models, and Other Agents. J. of Cognitive Systems Research 2, 81–93 (2001)

    Article  Google Scholar 

  28. Gultekin, I., Arslan, A.: Modular-Fuzzy Cooperative Algorithm for Multi-Agent Systems. In: Yakhno, T. (ed.) ADVIS 2002. LNCS, vol. 2457, pp. 255–263. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Guo, H., Meng, Y.: Dynamic Correlation Matrix-based Multi-Q Learning for a Multi-Robot System. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 840–845 (2008)

    Google Scholar 

  30. Melo, F.S., Ribeiro, M.I.: Reinforcement Learning with Function Approximation for Cooperative Navigation Tasks. In: Proc. of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, USA, pp. 3321–3327 (2008)

    Google Scholar 

  31. Sanz, Y., de Lope, J., Martín, J.A.H.: Applying Reinforcement Learing to Multi-Robot Team Coordination. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS, vol. 5271, pp. 625–632. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Tu, J.: Continuous Reinforcement Learning for Feedback Control Systems. Master’s thesis, Computer Science Department, Colorado State University, Fort Collins, USA (2001)

    Google Scholar 

  33. Rodić, A., Vukobratović, M., Addi, K., Dalleau, G.: Contribution to the Modeling of Non-smooth, Multi-point Contact Dynamics of Biped Locomotion – Theory and Experiments. Robotica 26, 157–175 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katić, D. (2009). New Trends in Robotic Reinforcement Learning: Single and Multi-robot Case. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds) Towards Intelligent Engineering and Information Technology. Studies in Computational Intelligence, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03737-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03737-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03736-8

  • Online ISBN: 978-3-642-03737-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics