Skip to main content

Tail Regeneration: Ultrastructural and Cytological Aspects

  • Chapter
  • First Online:
Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 207))

  • 626 Accesses

Abstract

Despite the numerous histological studies on regenerating tails, few ultrastructural studies have been conducted on the progressive stages of the process. These studies would allow a better identification of the modification of injured tissues and of the different cell types activated during the process of wounding. No ultrastructural studies are available for the wounding and the limited tissue regeneration of the limb.

Only the regenerating spinal cord has received a detailed transmission electron microscopy (TEM) analysis (Simpson 1968; Egar et al. 1970; Turner and Singer 1973; Alibardi 1990–1991). Other ultrastructural studies have been conducted on the differentiation of the main tissues in the tail (see later). These studies have permitted us to determine precisely the types of cells involved in the formation of the regenerative blastema in lizards and the proliferative potential of cells of the connective, ependymal, muscular, and blood tissues.

The following sections provide a summary of published and unpublished observations on the fine structure of the wounded and regenerating tissues of different species of lizards. More details can be found in specific publications cited in the following sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberio SO, Diniz JA, Silva EO, deSouza W, DaMatta RA (2005) Cytochemical and functional characterization of blood and inflammatory cells from the lizard Ameiva ameiva. Tiss Cell 37:193–202

    Article  CAS  Google Scholar 

  • Alibardi L (1986) Fenomeni degenerativi nell' ependima durante la rigenerazione codale di alcuni sauri. Atti Mem Acc Patav Sci Lett e Arti 98:55–64

    Google Scholar 

  • Alibardi L (1990–1991) Electron microscopic observations on the myelination of the long-term regenerated caudal spinal cord in lizards and Sphenodon. Biol Struct Morphog 3:147–158

    Google Scholar 

  • Alibardi L (1993a) H3-labeled cerebrospinal fluid contacting cells in the regenerating caudal spinal cord of the lizard Lampropholis. Annals Anat 176:347–356

    Google Scholar 

  • Alibardi L (1994a) Fine autoradiographical study on scale morphogenesis in the regenerating tail of lizards. Histol Histopath 9:119–134

    CAS  Google Scholar 

  • Alibardi L (1995a) Cytological localization of 3H-Proline in the regenerating spinal cord of the lizard Lampropholis. Ann Sci Natur (Paris) 16:137–143

    Google Scholar 

  • Alibardi L (1996a) Autoradiographic ultrastructural observation on the meninges of the regenerating tail of lizards. Bull Soc Anatom 80:5–9

    CAS  Google Scholar 

  • Alibardi L (1998) Presence of acid phosphatase in the epidermis of the regenerating tail of the lizard (Podarcis muralis) and its possible role in the process of shedding and keratinization. J Zool 246:379–390

    Article  Google Scholar 

  • Alibardi L (1999) Keratohyalin-like granules in embryonic and regenerating epidermis of lizards and Sphenodon punctatus (Reptilia, Lepidosauria). Amphibia-Reptilia 20:11–23

    Google Scholar 

  • Alibardi L (2009a) Ultrastructural features of the process of wound healing after tail and limb amputation in lizard. Acta Zool (In press)

    Google Scholar 

  • Alibardi L, Loviku JF (2009) Immunolocalization of FGF1 and FGF2 in the regenerating tail of the lizard Lampropholis guichenoti: implications for FGFs as trophic factors in tail regeneration. Acta Histoch (In press)

    Google Scholar 

  • Alibardi L, Meyer-Rochow VB (1988) Ultrastructure of the neural component of the regenerating spinal cord of three species of New Zealand lizards (Leiolopisma nigriplantare maccanni, Lampropholis delicata, and Hoplodactylus maculatum). New Zeal J Zool 15:535–550

    Google Scholar 

  • Alibardi L, Meyer-Rochow VB (1989) Comparative fine structure of the axial skeleton inside the regenerated tail of lizards and the tuatara (Sphenodon punctatus). Gegenb Morphol Jahrb (Leipzig) 135:705–716

    CAS  Google Scholar 

  • Alibardi L, Miolo V (1990) Fine observations on nerves colonizing the regenerating tail of the lizard Podarcis sicula. Histol Histophat 5:387–396

    CAS  Google Scholar 

  • Alibardi L, Sala M (1981) Indagini istochimiche sulla struttura della cartilagine rigenerata nella coda di Lacerta sicula. Arch Ital Anat Embr 88:163–182

    Google Scholar 

  • Alibardi L, Sala M (1983) Distribuzione di sostanze d' importanza morfogenetica in tessuti rigeneranti di Lacerta sicula, Triturus alpestris e Rana dalmatina. Atti Mem Acc Patav Sci Lett e Arti 95:100–151

    Google Scholar 

  • Alibardi L, Sala M (1986) Eterogeneita` e neurogenesi nell' ependima rigenerante di alcuni sauri (Reptilia). Arch Ital Anat Embriol 91:29–41

    Google Scholar 

  • Alibardi L, Sala M (1988a) Fine structure of the blastema in the regenerating tail of the lizard Podarcis sicula. Boll Zool 55:307–313

    Google Scholar 

  • Alibardi L, Toni M (2005) Wound keratins in the regenerating epidermis of lizard suggest that the wound reaction is similar in the tail and limb. J Exp Zool 303A:845–860

    Article  CAS  Google Scholar 

  • Alibardi L, Sala M, Meneghini C (1987) Effect of treatment with GABA on regenerating ependyma in lizards. Acta Embr Morphol Exper NS 8:181–185

    CAS  Google Scholar 

  • Alibardi L, Sala M, Miolo V (1988) Morphology of experimentally produced tails in lizards. Acta Embr Morph Exper NS 9:181–194

    Google Scholar 

  • Alibardi L, Gibbons J, Simpson SB Jr (1992) Fine structure of cells in the young regenerating spinal cord of the lizard Anolis carolinensis after H3-Thymidine administration. Biol Struct Morphog 4:45–52

    CAS  PubMed  Google Scholar 

  • Alibardi L, Wibel R, Simpson SB Jr (1993a) Scanning electron microscopic observations on the central canal of the regenerating tail spinal cord in lizard. Boll Zool 60:245–252

    Google Scholar 

  • Alibardi L, Maurizii MG, Taddei C (2000) Immunocytochemical and electrophoretic distribution of cytokeratins in the regenerating epidermis of the lizard Podarcis muralis. J Morphol 246:179–181

    Article  CAS  PubMed  Google Scholar 

  • Baffoni GM (1950) Fenomeni reattivi e degenerativi delle cellule nervose nei processi di cicatrizzazione del moncone caudale dei sauri. Rend Acc Naz Lincei 8:389–393

    Google Scholar 

  • Bauer AM (1998) Morphology of the adhesive tail tips of carphodactyline geckos (Reptilia: Diplodactylidae). J Morphol 235:41–58

    Article  Google Scholar 

  • Bayne EK, Simpson SB Jr (1977) Detection of myosin in prefusion G0 lizard myoblasts in vitro. Dev Biol 55:306–319

    Article  CAS  PubMed  Google Scholar 

  • Borrione P, Cervella P, Geuna S, Giacobini-Robecchi MG, Poncino A, Silengo L (1991) Electrophoretic analysis of neuronal genomic DNA from hypertophic spinal ganglia during lizard tail regeneration. Neurosci Lett 113:245–248

    Google Scholar 

  • Bottazzi-Bacchi A, Sassu G (1973) On the fine structure of the motor plates during muscular regeneration in Gongylus ocellatus. Acta Anat 85:580–592

    Article  Google Scholar 

  • Calori L (1858) Sullo scheletro della Lacerta viridis Linn., sulla riproduzione della coda nelle lucertole, e sulle ossa cutanee del teschio dei sauri. Mem Att Acc Sci Bologna 9:46–50

    Google Scholar 

  • Charvat Z, Kral B (1969) Development of new spinal ganglia during regeneration of spinal cord after autotomy of tail in Lacerta vivipara. West Afr Med J Niger Pract 18:3–6

    CAS  PubMed  Google Scholar 

  • Corcoran JP, Ferretti P (1997) Keratin 8 and 18 expression in mesenchymal progenitor cells of regenerating limbs is associated with cell proliferation and differentiation. Dev Dyn 210:355–370

    Article  CAS  PubMed  Google Scholar 

  • Cox PG (1969a) Some aspects of tail regeneration in the lizard Anolis carolinensis I. A description based on histology and autoradiography. J Exp Zool 171:127–150

    Article  Google Scholar 

  • Cristino L, Pica A, Della Corte F, Bentivoglio M (2000a) Plastic chages and nitric oxide synthase induction in neurons that innervate the regenerated tail of the lizard Gekko gecko I. Response of spinal motoneurons to tail amputation and regeneration. J Comp Neurol 417:60–72

    Article  CAS  PubMed  Google Scholar 

  • Dalla Valle L, Toffolo V, Belvedere P, Alibardi L (2005) Isolation of a mRNA encoding a glycine-proline-rich beta-keratin expressed in the regenerating epidermis of lizard. Dev Dyn 234:934–947

    Article  CAS  PubMed  Google Scholar 

  • Daniels CB, Lewis BC, Tsopelas C, Munns SL, Orgeig S, Baldwin ME, Stacker SA, Achen MG, Chatterton BE, Cooter RD (2003) Regenerating lizard tail: a new model for investigating lymphangiogenesis. FASEB 17:479–481

    CAS  Google Scholar 

  • Duffy MT, Simpson SB, Liebich DR, Davis BM (1990) Origin of spinal cord axons in the lizard regenerating tail: supernormal projections from local spinal neurons. J Comp Neurol 293:208–222

    Article  CAS  PubMed  Google Scholar 

  • Duffy MT, Liebich DR, Garner LK, Hawrych A, Simpson SB, Daviv BM (1992) Axonal sprouting and frank regeneration in the lizard tail spinal cord: correlation between chages in synaptic circuitry and axonal growth. J Comp Neurol 316:363–374

    Article  CAS  PubMed  Google Scholar 

  • Egar M, Simpson SB, Singer M (1970) The growth and differentiation of the regenerating spinal cord of the lizard, Anolis carolinensis. J Morphol 131:131–51

    Article  CAS  PubMed  Google Scholar 

  • Estrada CM, Park CD, Castilla M, Tassava RA (1993) Monoclonal antibody WE6 identifies an antigen that is u-regulated in the wound epthelium of newts and frogs. In: Fallon JF, Goetinck PF, Kelley RO, Stocum DL (eds) Limb development and regeneration. Wyley-Liss, New York, pp 271–282

    Google Scholar 

  • Ferguson MWJ, O’Kane S (2004) Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Phil Trans R Sco London B 359:839–850

    Article  CAS  Google Scholar 

  • Filogamo G, Marchisio PC (1961) Sulla sede delle placche motrici della musculatura della coda rigenerata dei sauri. Rendic Acc Naz Lincei (Sci Mat Fis Nat) 30:933–938

    Google Scholar 

  • Geraudie J, Ferretti P (1998) Gene expression during amphibian limb regeneration. Int Rev Cytol 180:1–50

    Article  CAS  PubMed  Google Scholar 

  • Geuna S, Giacobini-Robechhi MG, Poncino A, Filogamo G (1992) Nuclear hypertrophy and hyperdiploidy in lizard root ganglion neurons during innervation of the regenerating tail. Eur Arch Biol 103:63–70

    Google Scholar 

  • Gianpaoli S, Bucci S, Ragghianti M, Mancino G, Zhang F, Ferretti P (2003) Expression of FGF2 in the limb blastema of two salamandridae correlates with their regenerative capability. Proc Royal Soc London 270B:2197–2205

    Article  Google Scholar 

  • Giuliani M (1878) Sulla struttura del midollo spinale. Sulla riproduzione della coda della Lacerta viridis. Ric Lab Anat Norm (Ed G Todaro) Vol. I–II, 137–150

    Google Scholar 

  • Harty M, Neff AW, King MW, Mesher AL (2003) Regeneration and scarring: an immunologic perspective. Dev Dyn 226:268–279

    Article  PubMed  Google Scholar 

  • Hay ED (1996) An overview of epithelio-mesenchymal transformation. Acta Anat 154:8–20

    Article  Google Scholar 

  • Hiradar PK, Kotari JS, Shah RV (1979) Studies on changes in blood-cell populations during tail regeneration in the gekkonid lizard, Hamidactylus flaviviridis. Neth J Zool 29:129–136

    Article  Google Scholar 

  • Huchezermayer FW, Cooper JE (2000) Fibrishess, not abscess, resulting from a localized inflammatory response to infection in reptiles and birds. Veter Rec 147:515–517

    Article  Google Scholar 

  • Hughes A, New D (1959) Tail regeneration in the geckonid lizard, Sphaerodactylus. J Embryol Exp Morphol 7:281–302

    CAS  PubMed  Google Scholar 

  • Jiang M, Gu X, Feng X, Fan Z, Ding F, Liu Y (2007) The molecular characterisation of the brain protein 44-like (Brp44l) gene of Gekko japonicum and its expression changes in spinal cord after tail amputation. Mol Biol Reports 36:215–220

    Article  Google Scholar 

  • Kovacs EJ, DiPietro LA (1994) Fibrogenic cytokines and connective tissue production. FASEB J 8:854–861

    CAS  PubMed  Google Scholar 

  • Leblond CP (1991) Time dimension in biology. A radioautographic survey of the dynamic features of cells, cell components, and extracellular matrix. Protoplasma 160:5–38

    Article  Google Scholar 

  • Liu HC, Maneely RB (1969a) Observations on the development and regeneration of tail epidermis in Hemidactylus bowringi (Gray). Acta Anat (Basel) 72:549–83

    Article  CAS  Google Scholar 

  • Liu Y, Ding F, Jiang M, Yang H, Feng X, Gu X (2006) EST-based identification of genes expressed in brain and spinal cord of Gekko japonicus, a species demonstrating intrinsic capacity of spinal cord regeneration. J Molec Neurosci 29:21–27

    Article  CAS  PubMed  Google Scholar 

  • Maderson PFA (1971) The regeneration of caudal epidermal specialisations in Lygodactylus picturatus keniensis (Gekkonidae, Lacertilia). J Morphol 134:467–478

    Article  CAS  PubMed  Google Scholar 

  • Maderson PFA (1985) Some developmental problems of the reptilian integument. In: Gans C, Billett F, Maderson PFA (eds) Biology of Reptilia, vol 14B. Wiley, New York, pp 525–598

    Google Scholar 

  • Maderson PFA, Roth SI (1972) A histological study of early stages of cutaneous wound healing in lizards in vivo and in vitro. J Exp Zool 180:175–186

    Article  CAS  PubMed  Google Scholar 

  • Maderson PFA, Baranowitz S, Roth SI (1978) A histological study of the long term response to trauma of squamate integument. J Morphol 157:121–136

    Article  Google Scholar 

  • Marotta M (1946) Sulla rigenerazione del midollo spinale dei rettili. Atti Acc Naz Lincei 1:1367–1371

    Google Scholar 

  • Marusich MF, Simpson SB (1983) Changes in cell surface antigens during in vitro lizard myogenesis. Dev Biol 97:313–328

    Google Scholar 

  • McGowan K, Coulombe PA (1998) The wound repar-asociated keratins 6, 16, and 17. In: Herman H, Harris JR (eds) Subcellular biochemistry: intermediate filaments, vol 31. Plenum Press, New York, pp 173–202

    Google Scholar 

  • Mesher AL (1996) The cellular basis of limb regeneration in urodeles. Int J Dev Biol 40:785–795

    Google Scholar 

  • Montali RJ (1988) Comparative pathology of inflammation in the higher vertebrates (reptiles, birds and mammals). J Comp Path 99:1–26

    Article  CAS  PubMed  Google Scholar 

  • Pannese E (1963) Investigations on the ultrastructural changes of the spinal ganglion neurons in the course of axon regeneration and cell hypertophy. Zeitschr Zellf 60:711–740

    Article  CAS  Google Scholar 

  • Peadon AM, Singer M (1966) The blood vessels of the regenerating limb of the adult newt, Triturus. J Morphol 118:79–86

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JJ, Ruzicka AJ (1950) Comparison of fracture repair in the frog, lizard and rat. J Anat 84:236–262

    CAS  PubMed  Google Scholar 

  • Ramachandran AV, Kinariwala RV, Shah RV (1983) Haemopoiesis and regeneration: changes in the liver, spleen, bone marrow and hepatic ion content during tail regeneration in the scincid lizard, Mabuya carinata (Boulenger). Amph Rept 6:377–386

    Article  Google Scholar 

  • Sassu G, Marchisio PC (1963) La giunzione neuromuscolare nella coda rigenerata di Gongylus ocellatus. Studi Sassaresi 41:32–38

    Google Scholar 

  • Shah RV, Chakko TV (1972) Histochemical localisation of nucleic acids in the normal and regenerating tail of the house lizard, Hemidactylus flaviviridis. J Anim Morph Physiol 19:28–33

    CAS  Google Scholar 

  • Shah RV, Hiradhar PK (1975) Glycosaminoglycans during tail regeneration in the house lizard, Hemidactylus flaviviridis (Lacertilia: Gekkonidae). J Anim Morph Physiol 22:43–50

    CAS  Google Scholar 

  • Shah RV, Kinariwala RV, Ramachandran AV (1980) Haematopoiesis and regeneration: changes in the cellular elements of blood and haemoglobin during tail regeneration in the adult scincid lizard Mabuya carinata (Boulenger). Monit Zool Ital NS 14:137–150

    Google Scholar 

  • Simpson SB Jr (1964) Analysis of tail regeneration in the Lizard Lygosoma Laterale I. Initiation of regeneration and cartilage differentiation: the role of ependyma. J Morphol 114:425–35

    Article  PubMed  Google Scholar 

  • Simpson SB Jr (1968) Morphology of the regenerated spinal cord in the lizard, Anolis carolinensis. J Comp Neurol 134:193–210

    Article  PubMed  Google Scholar 

  • Simpson SB Jr (1970) Studies on regeneration of the lizard's tail. Am Zool 10:157–65

    PubMed  Google Scholar 

  • Simpson SB Jr, Cox PG (1967) Vertebrate regeneration system: culture in vitro. Science 157:1330–1332

    Article  PubMed  Google Scholar 

  • Simpson SB, Bayne EK (1979) In vivo and in vitro studies of regenerating muscle in the lizard Anolis. In: Mauro A (ed) Muscle regeneration. Raven Press, New York, pp. 189–200.

    Google Scholar 

  • Smith DA, Barker IK (1988) Healing of cutaneous wounds in the common garter snake (Thamnopis sirtalis). Can J Vet res 52:111–119

    CAS  PubMed  Google Scholar 

  • Terni T (1920) Sulla correlazione fra amplezza del territorio di innervazioni e grandezza della cellule gangliare. 2. Richerche sui gangli spinali che innervano la coda rigenerata, dei Sauri (Gongylus ocellatus). Arch Ital Anat Embriol 17:507–543

    Google Scholar 

  • Toole BP, Gross J (1971) The extracellular matrix of regenerating newt limbs: synthesis and removal of hyaluronate prior to differentiation. Dev Biol 25:57–77

    Article  CAS  PubMed  Google Scholar 

  • Tuchunduva M, Borelli P, Silva JRM (2001) Experimental study of induced inflammation in the Brazilian boa (Boa constrictor constrictor). J comp Pathol 125:174–181

    Article  Google Scholar 

  • Turner JE, Singer M (1973) Some morphological and ultrastructural changes in the ependyma during early regeneration of the tail in the lizard, Anolis carolinensis. J Morphol 140:257–270

    Article  Google Scholar 

  • Turner JE, Tipton SR (1971) The role of the lizard thyroid gland in tail regeneration. J Exp Zool 178:63–84

    Article  CAS  PubMed  Google Scholar 

  • VanDen Boom R, Wilmink JM, O’Kane S, Wood J, Ferguson MWJ (2002) Transforming growth factor- levels during second-intention healing are related to the different course of wound contraction in horses and ponies. Wound Heal Reg 10:188–194

    Article  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanism of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  Google Scholar 

  • Zannone L (1953) Fenomeni rigenerativi nervosi in rapporto con la rigenerazione della coda di Geko (Tarentola mauritanica). Ric Morfologia 22:183–2000

    Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Clarke JDW, Ferretti P (2000) FGF-2 up-regulation and proliferation of neural progenitors in the regenerating amphibian spinal cord in vivo. Dev Biol 225:381–391

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Alibardi .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alibardi, L. (2010). Tail Regeneration: Ultrastructural and Cytological Aspects. In: Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards. Advances in Anatomy, Embryology and Cell Biology, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03733-7_2

Download citation

Publish with us

Policies and ethics