Advertisement

Evolution of Query Optimization Methods

  • Abdelkader Hameurlain
  • Franck Morvan
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5740)

Abstract

Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).

The major contributions of this paper are: (i) understanding the mechanisms of query optimization methods with respect to the considered environments and their constraints (e.g. parallelism, distribution, heterogeneity, large scale, dynamicity of nodes) (ii) pointing out their main characteristics which allow comparing them, and (iii) the reasons for which proposed methods become very sophisticated.

Keywords

Relational Databases Query Optimization Parallel and Distributed Databases Data Integration Large Scale Data Grid Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adali, S., Candan, K.S., Papakonstantinou, Y., Subrahmanian, V.S.: Query Caching and Optimization in Distributed Mediator Systems. In: Proc. of ACM SIGMOD Intl. Conf. on Management of Data, pp. 137–148. ACM Press, New York (1996)Google Scholar
  2. 2.
    Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R., Watson, P., Li, P.: Using OGSA-DQP to support scientific applications for the grid. In: Herrero, P., S. Pérez, M., Robles, V. (eds.) SAG 2004. LNCS, vol. 3458, pp. 13–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Amsaleg, L., Franklin, M.J., Tomasic, A., Urhan, T.: Scrambling query plans to cope with unexpected delays. In: Proc. of the Fourth Intl. Conf. on Parallel and Distributed Information Systems, pp. 208–219. IEEE CS, Los Alamitos (1996)CrossRefGoogle Scholar
  4. 4.
    Amsaleg, L., Franklin, M., Tomasic, A.: Dynamic query operator scheduling for wide-area remote access. Distributed and Parallel Databases 6(3), 217–246 (1998)CrossRefGoogle Scholar
  5. 5.
    Antonioletti, M., et al.: The design and implementation of Grid database services in OGSA-DAI. In: Concurrency and Computation: Practice & Experience, vol. 17, pp. 357–376. Wiley InterScience, Hoboken (2005)Google Scholar
  6. 6.
    Arcangeli, J.-P., Hameurlain, A., Migeon, F., Morvan, F.: Mobile Agent Based Self-Adaptive Join for Wide-Area Distributed Query Processing. Jour. of Database Management 15(4), 25–44 (2004)CrossRefGoogle Scholar
  7. 7.
    Avnur, R., Hellerstein, J.-M.: Eddies: Continuously Adaptive Query Processing. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, vol. 29, pp. 261–272. ACM Press, New York (2000)Google Scholar
  8. 8.
    Babu, S., Bizarro, P., De Witt, D.J.: Proactive re-optimization. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 107–118. ACM Press, New York (2005)Google Scholar
  9. 9.
    Bancilhon, F., Ramakrishnan, R.: An Amateur’s Introduction to Recursive Query Processing Strategies. In: Proc. of the 1986 ACM SIGMOD Conf. on Management of Data, vol. 15, pp. 16–52. ACM Press, New York (1986)CrossRefGoogle Scholar
  10. 10.
    Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., Rothnie Jr.: Query Processing in a System for Distributed Databases (SDD-1). ACM Trans. Database Systems 6(4), 602–625 (1981)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bizarro, P., Bruno, N., De Witt, D.J.: Progressive Parametric Query Optimization. IEEE Transactions on Knowledge and Data Engineering 21(4), 582–594 (2009)CrossRefGoogle Scholar
  12. 12.
    Bonneau, S., Hameurlain, A.: Hybrid Simultaneous Scheduling and Mapping in SQL Multi-query Parallelization. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 88–99. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Bose, S.K., Krishnamoorthy, S., Ranade, N.: Allocating Resources to Parallel Query Plans in Data Grids. In: Proc. of the 6th Intl. Conf. on Grid and Cooperative Computing, pp. 210–220. IEEE CS, Los Alamitos (2007)Google Scholar
  14. 14.
    Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: A dynamic query processing architecture for data integration systems. Journal of IEEE Data Engineering Bulletin 23(2), 42–48 (2000)Google Scholar
  15. 15.
    Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: Dynamic query scheduling in data integration systems. In: Proc. of the 16th Intl. Conf. on Data Engineering, pp. 425–434. IEEE CS, Los Alamitos (2000)Google Scholar
  16. 16.
    Bratbergsengen, K.: Hashing Methods and Relational Algebra Operations. In: Proc. of 10th Intl. Conf. on VLDB, pp. 323–333. Morgan Kaufmann, San Francisco (1984)Google Scholar
  17. 17.
    Brunie, L., Kosch, H.: Control Strategies for Complex Relational Query Processing in Shared Nothing Systems. SIGMOD Record 25(3), 34–39 (1996)CrossRefGoogle Scholar
  18. 18.
    Brunie, L., Kosch, H.: Intégration d’heuristiques d’ordonnancement dans l’optimisation parallèle de requêtes relationnelles. Revue Calculateurs Parallèles, numéro spécial: Bases de données Parallèles et Distribuées 9(3), 327–346 (1997); Ed. HermèsGoogle Scholar
  19. 19.
    Brunie, L., Kosch, H., Wohner, W.: From the modeling of parallel relational query processing to query optimization and simulation. Parallel Processing Letters 8, 2–24 (1998)CrossRefGoogle Scholar
  20. 20.
    Bruno, N., Chaudhuri, S.: Efficient Creation of Statistics over Query Expressions. In: Proc. of the 19th Intl. Conf. on Data Engineering, Bangalore, India, pp. 201–212. IEEE CS, Los Alamitos (2003)Google Scholar
  21. 21.
    Chaudhuri, S.: An Overview of Query Optimization in Relational Systems. In: Symposium in Principles of Database Systems PODS 1998, pp. 34–43. ACM Press, New York (1998)Google Scholar
  22. 22.
    Chawathe, S.S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J.D., Widom, J.: The TSIMMIS Project: Integration of Heterogeneous Information Sources. In: Proc. of the 10th Meeting of the Information Processing Society of Japan, pp. 7–18 (1994)Google Scholar
  23. 23.
    Chekuri, C., Hassan, W.: Scheduling Problem in Parallel Query Optimization. In: Symposium in Principles of Database Systems PODS 1995, pp. 255–265. ACM Press, New York (1995)Google Scholar
  24. 24.
    Chen, M.S., Lo, M., Yu, P.S., Young, H.S.: Using Segmented Right-Deep Trees for the Execution of Pipelined Hash Joins. In: Proc. of the 18th VLDB Conf., pp. 15–26. Morgan Kaufmann, San Francisco (1992)Google Scholar
  25. 25.
    Chiu, D.M., Ho, Y.C.: A Methodology for Interpreting Tree Queries Into Optimal Semi-Join Expressions. In: Proc. of the 1980 ACM SIGMOD, pp. 169–178. ACM Press, New York (1980)CrossRefGoogle Scholar
  26. 26.
    Christophides, V., Cluet, S., Moerkotte, G.: Evaluating Queries with Generalized Path Expression. In: Proc. of the 1996 ACM SIGMOD, vol. 25, pp. 413–422. ACM Press, New York (1996)CrossRefGoogle Scholar
  27. 27.
    Cole, R.L., Graefe, G.: Optimization of dynamic query evaluation plans. In: Proc. of the 1994 ACM SIGMOD, vol. 24, pp. 150–160. ACM Press, New York (1994)CrossRefGoogle Scholar
  28. 28.
    Collet, C., Vu, T.-T.: QBF: A Query Broker Framework for Adaptable Query Evaluation. In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004. LNCS, vol. 3055, pp. 362–375. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Cybula, P., Kozankiewicz, H., Stencel, K., Subieta, K.: Optimization of Distributed Queries in Grid Via Caching. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 387–396. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Da Silva, V.F.V., Dutra, M.L., Porto, F., Schulze, B., Barbosa, A.C., de Oliveira, J.C.: An adaptive parallel query processing middleware for the Grid. In: Concurrence and Computation: Pratique and Experience, vol. 18, pp. 621–634. Wiley InterScience, Hoboken (2006)Google Scholar
  31. 31.
    Date, C.J.: An Introduction to Database Systems, 6th edn. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  32. 32.
    Deshpande, A., Hellerstein, J.-M.: Lifting the Burden of History from Adaptive Query Processing. In: Proc. of the 13th Intl. Conf. on VLDB, pp. 948–959. Morgan Kaufmann, San Francisco (2004)Google Scholar
  33. 33.
    De Witt, D.J., Kabra, N., Luo, J., Patel, J.M., Yu, J.B.: Client-Server Paradise. In: Proc. of the 20th VLDB Conf., pp. 558–569. Morgan Kaufmann, San Francisco (1994)Google Scholar
  34. 34.
    Dinquel, J.: Network Architectures for Cluster Computing. Technical Report 572, CECS, California State University (2000)Google Scholar
  35. 35.
    Du, W., Krishnamurthy, R., Shan, M.-C.: Query Optimization in a Heterogeneous DBMS. In: Proc. of the 18th Intl. Conf. on VLDB, pp. 277–291. Morgan Kaufmann, San Francisco (1992)Google Scholar
  36. 36.
    El Samad, M., Gossa, J., Morvan, F., Hameurlain, A., Pierson, J.-M., Brunie, L.: A monitoring service for large-scale dynamic query optimisation in a grid environment. Intl. Jour. of Web and Grid Services 4(2), 222–246 (2008)Google Scholar
  37. 37.
    Evrendilek, C., Dogac, A., Nural, S., Ozcan, F.: Multidatabase Query Optimization. Journal of Distributed and Parallel Databases 5(1), 77–113 (1997)CrossRefGoogle Scholar
  38. 38.
    Foster, I.: The Grid: A New Infrastructure for 21st Century Science. Physics Today 55(2), 42–56 (2002)CrossRefGoogle Scholar
  39. 39.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (2004)Google Scholar
  40. 40.
    Fuggetta, A., Picco, G.-P., Vigna, G.: Understanding Code Mobility. IEEE Transactions on Software Engineering 24(5), 342–361 (1998)CrossRefGoogle Scholar
  41. 41.
    Ganguly, S., Hasan, W., Krishnamurthy, R.: Query Optimization for Parallel Execution. In: Proc. of the 1992 ACM SIGMOD int’l. Conf. on Management of Data, vol. 21, pp. 9–18. ACM Press, San Diego (1992)CrossRefGoogle Scholar
  42. 42.
    Ganguly, S., Goel, A., Silberschatz, A.: Efficient and Accurate Cost Models for Parallel Query Optimization. In: Symposium in Principles of Database Systems PODS 1996, pp. 172–182. ACM Press, New York (1996)Google Scholar
  43. 43.
    Gardarin, G., Sha, F., Tang, Z.-H.: Calibrating the Query Optimizer Cost Model of IRO-DB, an Object-Oriented Federated Database System. In: Proc. of 22nd Intl. Conf. on VLDB, pp. 378–389. Morgan Kaufmann, San Francisco (1996)Google Scholar
  44. 44.
    Garofalakis, M.N., Ioannidis, Y.E.: Multi-dimensional Resource Scheduling for Parallel Queries. In: Proc. of the 1996 ACM SIGMOD intl. Conf. on Management of Data, vol. 25, pp. 365–376. ACM Press, New York (1996)CrossRefGoogle Scholar
  45. 45.
    Garofalakis, M.N., Ioannidis, Y.E.: Parallel Query Scheduling and Optimization with Time- and Space - Shared Resources. In: Proc. of the 23rd VLDB Conf., pp. 296–305. Morgan Kaufmann, San Francisco (1997)Google Scholar
  46. 46.
    Goldman, R., Widom, J.: WSQ/DSQ: A practical approach for combined querying of databases and the web. In: Proc. of ACM SIGMOD Conf., pp. 285–296. ACM Press, New York (2000)Google Scholar
  47. 47.
    Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Adaptive Query Processing: A Survey. In: Eaglestone, B., North, S.C., Poulovassilis, A. (eds.) BNCOD 2002. LNCS, vol. 2405, pp. 11–25. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  48. 48.
    Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A.: Adaptive Query Processing and the Grid: Opportunities and Challenges. In: Proc. of the 15th Intl. Dexa Workhop, pp. 506–510. IEEE CS, Los Alamitos (2004)Google Scholar
  49. 49.
    Gounaris, A., Sakellariou, R., Paton, N.W., Fernandes, A.A.A.: Resource Scheduling for Parallel Query Processing on Computational Grids. In: Proc. of the 5th IEEE/ACM Intl. Workshop on Grid Computing, pp. 396–401 (2004)Google Scholar
  50. 50.
    Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Watson, P.: Adapting to Changing Resource Performance in Grid Query. In: Pierson, J.-M. (ed.) VLDB DMG 2005. LNCS, vol. 3836, pp. 30–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  51. 51.
    Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Computing Survey 25(2), 73–170 (1993)CrossRefGoogle Scholar
  52. 52.
    Graefe, G.: Volcano - An Extensible and Parallel Query Evaluation System. IEEE Trans. Knowl. Data Eng. 6(1), 120–135 (1994)CrossRefGoogle Scholar
  53. 53.
    Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing Queries Across Diverse Data Sources. In: Proc. of 23rd Intl. Conf. on VLDB, pp. 276–285. Morgan Kaufmann, San Francisco (1997)Google Scholar
  54. 54.
    Hameurlain, A., Bazex, P., Morvan, F.: Traitement parallèle dans les bases de données relationnelles: concepts, méthodes et applications. Cépaduès Editions (1996)Google Scholar
  55. 55.
    Hameurlain, A., Morvan, F.: An Overview of Parallel Query Optimization in Relational Systems. In: 11th Intl Worshop on Database and Expert Systems Applications, pp. 629–634. IEEE CS, Los Alamitos (2000)CrossRefGoogle Scholar
  56. 56.
    Hameurlain, A., Morvan, F.: CPU and incremental memory allocation in dynamic parallelization of SQL queries. Journal of Parallel Computing 28(4), 525–556 (2002)zbMATHCrossRefGoogle Scholar
  57. 57.
    Hameurlain, A., Morvan, F.: Parallel query optimization methods and approaches: a survey. Journal of Computers Systems Science & Engineering 19(5), 95–114 (2004)Google Scholar
  58. 58.
    Hameurlain, A., Morvan, F., El Samad, M.: Large Scale Data management in Grid Systems: a Survey. In: IEEE Intl. Conf. on Information and Communication Technologies: from Theory to Applications, pp. 1–6. IEEE CS, Los Alamitos (2008)Google Scholar
  59. 59.
    Han, W.-S., Ng, J., Markl, V., Kache, H., Kandil, M.: Progressive optimization in a shared-nothing parallel database. In: Proc.of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 809–820 (2007)Google Scholar
  60. 60.
    Hasan, W., Motwani, R.: Optimization Algorithms for Exploiting the Parallelism - Communication Tradeoff in Pipelined Parallelism. In: Proc. of the 20th int’l. Conf. on VLDB, pp. 36–47. Morgan Kaufmann, San Francisco (1994)Google Scholar
  61. 61.
    Hasan, W., Florescu, D., Valduriez, P.: Open Issues in Parallel Query Optimization. SIGMOD Record 25(3), 28–33 (1996)CrossRefGoogle Scholar
  62. 62.
    Hellerstein, J.M., Franklin, M.J.: Adaptive Query Processing: Technology in Evolution. Bulletin of Technical Committee on Data Engineering 23(2), 7–18 (2000)Google Scholar
  63. 63.
    Hong, W.: Exploiting Inter-Operation Parallelism in XPRS. In: Proc. ACM SIGMOD Conf. on Management of Data, pp. 19–28. ACM Press, New York (1992)Google Scholar
  64. 64.
    Howes, T., Smith, M.C., Good, G.S., Howes, T.A., Smith, M.: Understanding and Deploying LDAP Directory Services. MacMillan, Basingstoke (1999)Google Scholar
  65. 65.
    Hu, N., Wang, Y., Zhao, L.: Dynamic Optimization of Sub query Processing in Grid Database, Natural Computation. In: Proc of the 3rd Intl Conf. on Natural Computation, vol. 5, pp. 8–13. IEEE CS, Los Alamitos (2007)Google Scholar
  66. 66.
    Hussein, M., Morvan, F., Hameurlain, A.: Embedded Cost Model in Mobile Agents for Large Scale Query Optimization. In: Proc. of the 4th Intl. Symposium on Parallel and Distributed Computing, pp. 199–206. IEEE CS, Los Alamitos (2005)Google Scholar
  67. 67.
    Hussein, M., Morvan, F., Hameurlain, A.: Dynamic Query Optimization: from Centralized to Decentralized. In: 19th Intl. Conf. on Parallel and Distributed Computing Systems, ISCA, pp. 273–279 (2006)Google Scholar
  68. 68.
    Ioannidis, Y.E., Wong, E.: Query Optimization by Simulated Annealing. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 9–22. ACM Press, New York (1987)Google Scholar
  69. 69.
    Ioannidis, Y.E., Kang, Y.C.: Randomized Algorithms for Optimizing Large Join Queries. In: Proc of the 1990 ACM SIGMOD Conf. on the Manag. of Data, vol. 19, pp. 312–321 (1990)Google Scholar
  70. 70.
    Ioannidis, Y.E., Christodoulakis, S.: On the Propagation of Errors in the Size of Join Results. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 268–277. ACM Press, New York (1991)Google Scholar
  71. 71.
    Ioannidis, Y.E., Ng, R.T., Shim, K., Sellis, T.K.: Parametric Query Optimization. In: 18th Intl. Conf. on VLDB, pp. 103–114. Morgan Kaufmann, San Francisco (1992)Google Scholar
  72. 72.
    Ives, Z.-G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An adaptive query execution system for data integration. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 299–310. ACM Press, New York (1999)Google Scholar
  73. 73.
    Ives, Z.-G., Levy, A.Y., Weld, D.S., Florescu, D., Friedman, M.: Adaptive query processing for internet applications. Journal of IEEE Data Engineering Bulletin 23(2), 19–26 (2000)Google Scholar
  74. 74.
    Ives, Z.-G., Halevy, A.-Y., Weld, D.-S.: Adapting to Source Properties in Processing Data Integration Queries. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 395–406. ACM Press, New York (2004)Google Scholar
  75. 75.
    Jarke, M., Koch, J.: Query Optimization in Database Systems. ACM Comput. Surv. 16(2), 111–152 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Jones, R., Brown, J.: Distributed query processing via mobile agents (1997), http://www.cs.umd.edu/~rjones/paper.html
  77. 77.
    Kabra, N., Dewitt, D.J.: Efficient Mid - Query Re-Optimization of Sub-Optimal Query Execution Plans. In: Proc. of the ACM SIGMOD intl. Conf. on Management of Data, vol. 27, pp. 106–117. ACM Press, New York (1998)Google Scholar
  78. 78.
    Kabra, N., De Witt, D.J.: OPT++: An Object-Oriented Implementation for Extensible Database Query Optimization. VLDB Journal 8, 55–78 (1999)CrossRefGoogle Scholar
  79. 79.
    Khan, M.F., Paul, R., Ahmed, I., Ghafoor, A.: Intensive Data Management in Parallel Systems: A Survey. Distributed and Parallel Databases 7, 383–414 (1999)CrossRefGoogle Scholar
  80. 80.
    Khan, L., Mcleod, D., Shahabi, C.: An Adaptive Probe-Based Technique to Optimize Join Queries in Distributed Internet Databases. Journal of Database Management 12(4), 3–14 (2001)zbMATHCrossRefGoogle Scholar
  81. 81.
    Kosch, H.: Managing the operator ordering problem in parallel databases. Future Generation Computer Systems 16(6), 665–676 (2000)CrossRefGoogle Scholar
  82. 82.
    Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Computing Surveys 32(4), 422–469 (2000)CrossRefGoogle Scholar
  83. 83.
    Lanzelotte, R.S.G.: OPUS: an extensible Optimizer for Up-to-date database Systems. Ph-D Thesis, Computer Science, PUC-RIO, available at INRIA, Rocquencourt, n° TU-127 (1990)Google Scholar
  84. 84.
    Lanzelotte, R.S.G., Valduriez, P.: Extending the Search Strategy in a Query Optimizer. In: Proc. of the Int’l Conf. on VLDB, pp. 363–373. Morgan Kaufmann, San Francisco (1991)Google Scholar
  85. 85.
    Lanzelotte, R.S.G., Zaït, M., Gelder, A.V.: Measuring the effectiveness of optimization. Search Strategies. In: BDA 1992, Trégastel, pp. 162–181 (1992)Google Scholar
  86. 86.
    Lanzelotte, R.S.G., Valduriez, P., Zaït, M.: On the Effectiveness of Optimization Search Strategies for Parallel Execution Spaces. In: Proc. of the Intl Conf. on VLDB, pp. 493–504. Morgan Kaufmann, San Francisco (1993)Google Scholar
  87. 87.
    Lazaridis, I., Mehrotra, S.: Optimization of multi-version expensive predicates. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 797–808. ACM Press, New York (2007)Google Scholar
  88. 88.
    Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information Sources Using Source Descriptions. In: Proc. of the Intl. Conf. on VLDB, pp. 251–262. Morgan Kaufmann, San Francisco (1996)Google Scholar
  89. 89.
    Liu, S., Karimi, H.A.: Grid query optimizer to improve query processing in grids. Future Generation Computer Systems 24(5), 342–353 (2008)CrossRefGoogle Scholar
  90. 90.
    Lu, H., Ooi, B.C., Tan, K.-L.: Query Processing in Parallel Relational Database Systems. IEEE CS Press, Los Alamitos (1994)Google Scholar
  91. 91.
    Mackert, L.F., Lohman, G.M.: R* Optimizer Validation and Performance Evaluation for Distributed Queries. In: Proc. of the 12th Intl. Conf. on VLDB, pp. 149–159 (1986)Google Scholar
  92. 92.
    Manolescu, I.: Techniques d’optimisation pour l’interrogation des sources de données hétérogènes et distribuées, Ph-D Thesis, Université de Versailles Saint-Quentin-en-Yvlenies, France (2001)Google Scholar
  93. 93.
    Manolescu, I., Bouganim, L., Fabret, F., Simon, E.: Efficient querying of distributed resources in mediator systems. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 468–485. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  94. 94.
    Marzolla, M., Mordacchini, M., Orlando, S.: Peer-to-Peer for Discovering resources in a Dynamic Grid. Jour. of Parallel Computing 33(4-5), 339–358 (2007)CrossRefGoogle Scholar
  95. 95.
    Mehta, M., Dewitt, D.J.: Managing Intra-Operator Parallelism in Parallel Database Systems. In: Proc. of the 21th Intl. Conf. on VLDB, pp. 382–394 (1995)Google Scholar
  96. 96.
    Mehta, M., Dewitt, D.J.: Data Placement in Shared-Nothing Parallel Database Systems. The VLDB Journal 6, 53–72 (1997)CrossRefGoogle Scholar
  97. 97.
    Morvan, F., Hussein, M., Hameurlain, A.: Mobile Agent Cooperation Methods for Large Scale Distributed Dynamic Query Optimization. In: Proc. of the 14th Intl. Workshop on Database and Expert Systems Applications, pp. 542–547. IEEE CS, Los Alamitos (2003)Google Scholar
  98. 98.
    Morvan, F., Hameurlain, A.: Dynamic Query Optimization: Towards Decentralized Methods. Intl. Jour. of Intelligent Information and Database Systems (to appear, 2009)Google Scholar
  99. 99.
    Naacke, H., Gardarin, G., Tomasic, A.: Leveraging Mediator Cost Models with Heterogeneous Data Sources. In: Proc. of the 14th Intl. Conf. on Data Engineering, pp. 351–360. IEEE CS, Los Alamitos (1998)CrossRefGoogle Scholar
  100. 100.
    Ono, K., Lohman, G.M.: Measuring the Complexity of Join Enumeration in Query Optimization. In: Proc. of the Int’l Conf. on VLDB, pp. 314–325. Morgan Kaufmann, San Francisco (1990)Google Scholar
  101. 101.
    Ozakar, B., Morvan, F., Hameurlain, A.: Mobile Join Operators for Restricted Sources. Mobile Information Systems: An International Journal 1(3), 167–184 (2005)CrossRefGoogle Scholar
  102. 102.
    Ozcan, F., Nural, S., Koksal, P., Evrendilek, C., Dogac, A.: Dynamic query optimization in multidatabases. Data Engineering Bulletin CS 20(3), 38–45 (1997)Google Scholar
  103. 103.
    Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  104. 104.
    Pacitti, E., Valduriez, P., Mattoso, M.: Grid Data Management: Open Problems and News Issues. Intl. Journal of Grid Computing 5(3), 273–281 (2007)CrossRefGoogle Scholar
  105. 105.
    Paton, N.W., Chávez, J.B., Chen, M., Raman, V., Swart, G., Narang, I., Yellin, D.M., Fernandes, A.A.A.: Autonomic query parallelization using non-dedicated computers: an evaluation of adaptivity options. VLDB Journal 18(1), 119–140 (2009)CrossRefGoogle Scholar
  106. 106.
    Porto, F., da Silva, V.F.V., Dutra, M.L., Schulze, B.: An Adaptive Distributed Query Processing Grid Service. In: Pierson, J.-M. (ed.) VLDB DMG 2005. LNCS, vol. 3836, pp. 45–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  107. 107.
    Rahm, E., Marek, R.: Dynamic Multi-Resource Load Balancing in Parallel Database Systems. In: Proc. of the 21st VLDB Conf., pp. 395–406 (1995)Google Scholar
  108. 108.
    Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using templates with binding patterns. In: The Proc. of ACM PODS, pp. 105–112. ACM Press, New York (1995)Google Scholar
  109. 109.
    Raman, V., Deshpande, A., Hellerstein, J.-M.: Using State Modules for Adaptive Query Processing. In: Proc. of the 19th Intl. Conf. on Data Engineering, pp. 353–362. IEEE CS, Los Alamitos (2003)Google Scholar
  110. 110.
    Sahuguet, A., Pierce, B., Tannen, V.: Distributed Query Optimization: Can Mobile Agents Help? (2000), http://www.seas.upenn.edu/~gkarvoun/dragon/publications/sahuguet/
  111. 111.
    Schneider, D., Dewitt, D.J.: Tradeoffs in Processing Complex Join Queries via Hashing in Multiprocessor Database Machines. In: Proc. of the 16th VLDB Conf., pp. 469–480. Morgan Kaufmann, San Francisco (1990)Google Scholar
  112. 112.
    Selinger, P.G., Astrashan, M., Chamberlin, D., Lorie, R., Price, T.: Access Path Selection in a Relational Database Management System. In: Proc. of the 1979 ACM SIGMOD Conf. on Management of Data, pp. 23–34. ACM Press, New York (1979)CrossRefGoogle Scholar
  113. 113.
    Selinger, P.G., Adiba, M.E.: Access Path Selection in Distributed Database Management Systems. In: Proc. Intl. Conf. on Data Bases, pp. 204–215 (1980)Google Scholar
  114. 114.
    Slimani, Y., Najjar, F., Mami, N.: An Adaptable Cost Model for Distributed Query Optimization on the Grid. In: Meersman, R., Tari, Z., Corsaro, A. (eds.) OTM-WS 2004. LNCS, vol. 3292, pp. 79–87. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  115. 115.
    Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Distributed Query Processing on the Grid. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 279–290. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  116. 116.
    Soe, K.M., New, A.A., Aung, T.N., Naing, T.T., Thein, N.L.: Efficient Scheduling of Resources for Parallel Query Processing on Grid-based Architecture. In: Proc. of the 6th Asia-Pacific Symposium, pp. 276–281. IEEE CS, Los Alamitos (2005)Google Scholar
  117. 117.
    Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning Optimizer. In: Proc.of 27th Intl. Conf. on Very Large Data Bases, pp. 19–28. Morgan Kaufmann, San Francisco (2001)Google Scholar
  118. 118.
    Stonebraker, M., Katz, R.H., Paterson, D.A., Ousterhout, J.K.: The Design of XPRS. In: Proc. of the 4th VLDB Conf., pp. 318–330. Morgan Kaufmann, San Francisco (1988)Google Scholar
  119. 119.
    Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin, C., Yu, A.: Mariposa: A Wide-Area Distributed Database System. VLDB Jour. 5(1), 48–63 (1996)CrossRefGoogle Scholar
  120. 120.
    Stonebraker, M., Hellerstein, J.M.: Readings in Database Systems, 3rd edn. Morgan Kaufmann, San Francisco (1998)Google Scholar
  121. 121.
    Swami, A.: Optimization of large join queries. Technical report, Software Techonology Laboratory, H-P Laboratories, Report STL-87-15 (1987)Google Scholar
  122. 122.
    Swami, A.N., Gupta, A.: Optimization of Large Join Queries. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 8–17. ACM Press, New York (1988)Google Scholar
  123. 123.
    Swami, A.N.: Optimization of Large Join Queries: Combining Heuristic and Combinatorial Techniques. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 367–376 (1989)Google Scholar
  124. 124.
    Tan, K.L., Lu, H.: A Note on the Strategy Space of Multiway Join Query Optimization Problem in Parallel Systems. SIGMOD Record 20(4), 81–82 (1991)CrossRefGoogle Scholar
  125. 125.
    Taniar, D., Leung, C.H.C.: Query execution scheduling in parallel object-oriented databases. Information & Software Technology 41(3), 163–178 (1999)CrossRefGoogle Scholar
  126. 126.
    Taniar, D., Leung, C.H.C., Rahayu, J.W., Goel, S.: High Performance Parallel Database Processing and Grid Databases. John Wiley & Sons, Chichester (2008)CrossRefGoogle Scholar
  127. 127.
    Tomasic, A., Raschid, L., Valduriez, P.: Scaling Heterogeneous Databases and the Design of Disco. In: Proc. of the 16th Intl. Conf. on Distributed Computing Systems, pp. 449–457. IEEE CS, Los Alamitos (1996)CrossRefGoogle Scholar
  128. 128.
    Tomasic, A., Raschid, L., Valduriez, P.: Scaling Access to Heterogeneous Data Sources with DISCO. IEEE Trans. Knowl. Data Eng. 10(5), 808–823 (1998)CrossRefGoogle Scholar
  129. 129.
    Trunfio, P., et al.: Peer-to-Peer resource discovery in Grids: Models and systems. Future Generation Computer Systems 23(7), 864–878 (2007)CrossRefGoogle Scholar
  130. 130.
    Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Computer Science Press (1988)Google Scholar
  131. 131.
    Urhan, T., Franklin, M.: XJoin: A reactively-scheduled pipelined join operator. IEEE Data Engineering Bulletin 23(2), 27–33 (2000)Google Scholar
  132. 132.
    Urhan, T., Franklin, M.: Dynamic pipeline scheduling for improving interactive query performance. In: Proc.of 27th Intl. Conf. on VLDB, pp. 501–510. Morgan Kaufmann, San Francisco (2001)Google Scholar
  133. 133.
    Valduriez, P.: Semi-Join Algorithms for Distributed Database Machines. In: Proc. of the 2nd Intl. Symposium on Distributed Data Bases, pp. 22–37. North-Holland Publishing Company, Amsterdam (1982)Google Scholar
  134. 134.
    Valduriez, P., Gardarin, G.: Join and Semijoin Algorithms for a Multiprocessor Database Machine. ACM Trans. Database Syst. 9(1), 133–216 (1984)CrossRefGoogle Scholar
  135. 135.
    Wohrer, A., Brezany, P., Tjoa, A.M.: Novel mediator architectures for Grid information systems. Future Generation Computer Systems, 107–114 (2005)Google Scholar
  136. 136.
    Wiederhold, G.: Mediators in the Architecture of Future Information Systems. Journal of IEEE Computer 25(3), 38–49 (1992)CrossRefGoogle Scholar
  137. 137.
    Wolski, R., Spring, N.T., Hayes, J.: The Network Weather Service: A Distributed Resource Performance Forecasting Service for Metacomputing. Journal of Future Generation Computing Systems 15(5-6), 757–768 (1999)CrossRefGoogle Scholar
  138. 138.
    Wong, E., Youssefi, K.: Decomposition: A Strategy for Query Processing. ACM Transactions on Database Systems 1, 223–241 (1976)CrossRefGoogle Scholar
  139. 139.
    Yerneni, R., Li, C., Ullman, J.D., Garcia-Molina, H.: Optimizing Large Join Queries in Mediation Systems. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 348–364. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  140. 140.
    Zhou, Y., Ooi, B.C., Tan, K.-L., Tok, W.H.: An adaptable distributed query processing architecture. Data & Knowledge Engineering 53(3), 283–309 (2005)CrossRefGoogle Scholar
  141. 141.
    Zhu, Q., Motheramgari, S., Sun, Y.: Cost Estimation for Queries Experiencing Multiple Contention States in Dynamic Multidatabase Environments. Journal of Knowledge and Information Systems Publishers 5(1), 26–49 (2003)CrossRefGoogle Scholar
  142. 142.
    Ziane, M., Zait, M., Borlat-Salamet, P.: Parallel Query Processing in DBS3. In: Proc of the 2nd Intl. Conf. on Parallel and Distributed Information Systems, pp. 93–102. IEEE CS, Los Alamitos (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Abdelkader Hameurlain
    • 1
  • Franck Morvan
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse IRITPaul Sabatier UniversityToulouse CedexFrance

Personalised recommendations