Information Systems for Federated Biobanks

  • Johann Eder
  • Claus Dabringer
  • Michaela Schicho
  • Konrad Stark
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5740)


Biobanks store and manage collections of biological material (tissue, blood, cell cultures, etc.) and manage the medical and biological data associated with this material. Biobanks are invaluable resources for medical research. The diversity, heterogeneity and volatility of the domain make information systems for biobanks a challenging application domain. Information systems for biobanks are foremost integration projects of heterogenous fast evolving sources.

The European project BBMRI (Biobanking and Biomolecular Resources Research Infrastructure) has the mission to network European biobanks, to improve resources for biomedical research, an thus contribute to improve the prevention, diagnosis and treatment of diseases.

We present the challenges for interconnecting European biobanks and harmonizing their data. We discuss some solutions for searching for biological resources, for managing provenance and guaranteeing anonymity of donors. Furthermore, we show how to support the exploitation of such a resource in medical studies with specialized CSCW tools.


biobanks data quality and provenance anonymity heterogeneity federation CSCW 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Biobanking and biomolecular resources research infrastructure (bbmri),
  3. 3.
    Cabig - cancer biomedical informatics grid,
  4. 4.
  5. 5.
  6. 6.
    Who: International statistical classification of diseases and related health problems. 10th revision version for 2007 (2007)Google Scholar
  7. 7.
    Who: International classification of diseases for oncology, 3rd edn., icd-o-3 (2000)Google Scholar
  8. 8.
    Organisation for economic cooperation and development: Biological resource centres: Underpinning the future of life sciences and biotechnology (2001)Google Scholar
  9. 9.
    Genespring: Cutting-edge tools for expression analysis (2005),
  10. 10.
    Nih guide: Informed consent in research involving human participants (2006)Google Scholar
  11. 11.
    Bbmri: Construction of new infrastructures - preparatory phase. INFRA–2007– European Bio-Banking and Biomolecular Resources (April 2007)Google Scholar
  12. 12.
    Organisation for economic cooperation and development. best practice guidelines for biological resource centres (2007)Google Scholar
  13. 13.
    Uk biobank: Protocol for a large-scale prospective epidemiological resource. Protocol No: UKBB-PROT-09-06 (March 2007)Google Scholar
  14. 14.
    Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the kepler scientific workflow system, pp. 118–132 (2006)Google Scholar
  15. 15.
    Ambrosone, C.B., Nesline, M.K., Davis, W.: Establishing a cancer center data bank and biorepository for multidisciplinary research. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 15(9), 1575–1577 (2006)CrossRefGoogle Scholar
  16. 16.
    Asslaber, M., Abuja, P., Stark, K., Eder, J., Gottweis, H., Trauner, M., Samonigg, H., Mischinger, H., Schippinger, W., Berghold, A., Denk, H., Zatloukal, K.: The genome austria tissue bank (gatib). Pathobiology 2007 74, 251–258 (2007)Google Scholar
  17. 17.
    Asslaber, M., Zatloukal, K.: Biobanks: transnational, european and global networks. Briefings in functional genomics & proteomics 6(3), 193–201 (2007)CrossRefGoogle Scholar
  18. 18.
    Cambon-Thomsen, A.: The social and ethical issues of post-genomic human biobanks. Nat. Rev. Genet. 5(11), 866–873 (2004)CrossRefGoogle Scholar
  19. 19.
    Chamoni, P., Stock, S.: Temporal structures in data warehousing. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 353–358. Springer, Heidelberg (1999)Google Scholar
  20. 20.
    Eder, J., Dabringer, C., Schicho, M., Stark, K.: Data management for federated biobanks. In: Proc. DEXA 2009 (2009)Google Scholar
  21. 21.
    Eder, J., Koncilia, C.: Changes of dimension data in temporal data warehouses. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 284–293. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Eder, J., Koncilia, C., Morzy, T.: The comet metamodel for temporal data warehouses. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 83–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Elliott, P., Peakman, T.C.: The uk biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. International Journal of Epidemiology 37(2), 234–244 (2008)CrossRefGoogle Scholar
  24. 24.
    Foster, I., Vöckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing, querying, and automating data derivation. In: Proceedings of the 14th Conference on Scientific and Statistical Database Management, pp. 37–46 (2002)Google Scholar
  25. 25.
    Goeman, J.J., van de Geer, S.A., de Kort, F., van Houwelingen, H.C.: A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20(1), 93–99 (2004)CrossRefGoogle Scholar
  26. 26.
    Goos, G., Hartmanis, J., Sripada, S., Leeuwen, J.V., Jajodia, S.: Temporal Databases: Research and Practice. Springer, New York (1998)Google Scholar
  27. 27.
    Gottweis, H., Zatloukal, K.: Biobank governance: Trends and perspectives. Pathobiology 2007 74, 206–211 (2007)Google Scholar
  28. 28.
    Hewitt, S.: Design, construction, and use of tissue microarrays. Protein Arrays: Methods and Protocols 264, 61–72 (2004)CrossRefGoogle Scholar
  29. 29.
    Hummel, M., Meister, R., Mansmann, U.: Globalancova: exploration and assessment of gene group effects. Bioinformatics 24(1), 78–85 (2008)CrossRefGoogle Scholar
  30. 30.
    Isabelle, M., Teodorovic, I., Morente, M., Jaminé, D., Passioukov, A., Lejeune, S., Therasse, P., Dinjens, W., Oosterhuis, J., Lam, K., Oomen, M., Spatz, A., Ratcliffe, C., Knox, K., Mager, R., Kerr, D., Pezzella, F.: Tubafrost 5: multifunctional central database application for a european tumor bank. Eur. J. Cancer 42(18), 3103–3109 (2006)CrossRefGoogle Scholar
  31. 31.
    Kim, S.: Development of a human biorepository information system at the university of kentucky markey cancer center. In: International Conference on BioMedical Engineering and Informatics, vol. 1, pp. 621–625 (2008)Google Scholar
  32. 32.
    Litwin, W., Mark, L., Roussopoulos, N.: Interoperability of multiple autonomous databases. ACM Comput. Surv. 22(3), 267–293 (1990)CrossRefGoogle Scholar
  33. 33.
    Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A., Tarczy-Hornoch, P.: Methodological review: Data integration and genomic medicine. J. of Biomedical Informatics 40(1), 5–16 (2007)CrossRefGoogle Scholar
  34. 34.
    Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.: Data lineage model for taverna workflows with lightweight annotation requirements. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 17–30. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Muilu, J., Peltonen, L., Litton, J.: The federated database - a basis for biobank-based post-genome studies, integrating phenome and genome data from 600 000 twin pairs in europe. European Journal of Human Genetics 15, 718–723 (2007)CrossRefGoogle Scholar
  36. 36.
    Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and directions. In: Proceedings of the Fourth International Conference on Web Information Systems Engineering, WISE 2003, pp. 3–12 (2003)Google Scholar
  37. 37.
    Ram, S., Liu, J.: A semiotics framework for analyzing data provenance research. Journal of computing Science and Engineering 2(3), 221–248 (2008)CrossRefGoogle Scholar
  38. 38.
    Rebulla, P., Lecchi, L., Giovanelli, S., Butti, B., Salvaterra, E.: Biobanking in the year 2007. Transfusion Medicine and Hemotherapy 34, 286–292 (2007)CrossRefGoogle Scholar
  39. 39.
    Riegman, P., Morente, M., Betsou, F., de Blasio, P., Geary, P.: Biobanking for better healthcare. In: The Marble Arch International Working Group on Biobanking for Biomedical Research (2008)Google Scholar
  40. 40.
    Saltz, J., Oster, S., Hastings, S., Langella, S., Kurc, T., Sanchez, W., Kher, M., Manisundaram, A., Shanbhag, K., Covitz, P.: Cagrid: design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics 22(15), 1910–1916 (2006)CrossRefGoogle Scholar
  41. 41.
    Schroeder, C.: Vernetzte gewebesammlungen fuer die forschung crip. Laborwelt 5, 26–27 (2007)Google Scholar
  42. 42.
    Schulte, J., Hampel, T., Stark, K., Eder, J., Schikuta, E.: Towards the next generation of service-oriented flexible collaborative systems – a basic framework applied to medical research. In: Cordeiro, J., Filipe, J. (eds.) ICEIS 2008 - Proceedings of the Tenth International Conference on Enterprise Information Systems, number 978-989-8111-36-4, Barcelona, Spain, June 2008, pp. 232–239 (2008)Google Scholar
  43. 43.
    Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv. 22(3), 183–236 (1990)CrossRefGoogle Scholar
  44. 44.
    Simmhan, Y.L., Plale, B., Gannon, D.: A framework for collecting provenance in data-centric scientific workflows. In: ICWS 2006: Proceedings of the IEEE International Conference on Web Services, Washington, DC, USA, pp. 427–436. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  45. 45.
    Stark, K., Schulte, J., Hampel, T., Schikuta, E., Zatloukal, K., Eder, J.: GATiB-CSCW, medical research supported by a service-oriented collaborative system. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 148–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  46. 46.
    Stevens, R., Zhao, J., Goble, C.: Using provenance to manage knowledge of in silico experiments. Briefings in bioinformatics 8(3), 183–194 (2007)CrossRefGoogle Scholar
  47. 47.
    Sturn, A., Quackenbush, J., Trajanoski, Z.: Genesis: cluster analysis of microarray data. Bioinformatics 18(1), 207–208 (2002)CrossRefGoogle Scholar
  48. 48.
    Sweeney, L., Samarati, P.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. In: Proceedings of the IEEE Symposium on Research in Security and Privacy (1998)Google Scholar
  49. 49.
    Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U S A 98(9), 5116–5121 (2001)CrossRefzbMATHGoogle Scholar
  50. 50.
    Ulitsky, I., Shamir, R.: Identification of functional modules using network topology and high-throughput data. BMC Systems Biology 1(1) (2007)Google Scholar
  51. 51.
    Yang, J.: Temporal Data Warehousing. Stanford University (2001)Google Scholar
  52. 52.
    Zatloukal, K., Yuille, M.: Information on the proposal for european research infrastructure. In: European Bio-Banking and Biomolecular Resources (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Johann Eder
    • 1
  • Claus Dabringer
    • 1
  • Michaela Schicho
    • 1
  • Konrad Stark
    • 2
  1. 1.Department of Informatics SystemsAlps Adria University KlagenfurtAustria
  2. 2.Department of Knowledge and Business EngineeringUniversity of ViennaAustria

Personalised recommendations