Skip to main content
  • 731 Accesses

Relatively low dose radiotherapy has been used to treat a variety of acute and chronic infl ammatory diseases and painful disorders for over 70 years [1]. These include nasopha-ryngeal radium radiotherapy for adenoid hypertrophy, and low dose X-ray radiotherapy for skin hemangioma, thymus gland enlargement, benign breast disease, and fertility problems. Recommended single doses were 0.3–1.0 Gy in 4–5 fractions for acute and 1–3 fractions for chronic diseases per week for total doses of 3–5 and 12 Gy, respectively [2, 3]. Decreased cancer risks among these exposed clinical groups will be examined in subsequent chapters.

Radon has been therapeutically used for centuries to treat infectious and infl ammatory conditions, and as an analgesic and anti-infl ammatory agent for arthritis, rheumatism, fi bromyalgia, psoriasis, asthma and bronchitis [4–6]. Radon is helpful in the treatment and prevention of osteoarthritis [7]. Tens of thousands of people annually expose themselves to high levels of radon for therapeutic benefi t in old mines, spas and clinics exposed by inhalation, bath or steam (Chap. 14). 222Rn gas enhances the activity of superoxide dis-mutase and catalase, inhibits lipid peroxidation, and enhances immune function (mitogen response, CD4 and CD8 positive cells, which are markers for helper T cells and killer T cells, respectively) [8, 9]. Epidemiological studies of radon therapy patients have not demonstrated any carcinogenic effect from radon therapy up to 1,000 Bq/m3, or seven times the EPA limit (Chap. 8) [9].

The NCRP could turn on us at any time and come up with new recommendations, perhaps under pressure to implement the ICRP model. It is also clear from history that you can never relax your vigilance with so many groups trying to meddle and regulate in this arena

(Bob Dixon)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Pannewitz G (1933) Die Rontgentherapie der Arthritis deformans. Ergebnisse der medizinischen Strahlenforschung 6:62–126

    Google Scholar 

  2. Seegenschmiedt MH, Micke O, Willich N (2004) Radiation therapy for nonmalignant diseases in Germany. Current concepts and future perspectives. Stranhlentherapie Onkologie 180:P718–P730

    Article  Google Scholar 

  3. Rodel F, Keilholz L, Herrmann M et al (2007) Radiobiological mechanisms in infl ammatory diseases of low-dose radiation therapy. Int J Radiat Biol 83:357–366

    Article  CAS  PubMed  Google Scholar 

  4. Cuttler JM (2004) Low-dose irradiation therapy to cure gas gangrene infections. Int J Low Radiat 1:318–328

    Google Scholar 

  5. Franke A, Reiner L, Pratzel HG et al (2000) Long-term effi cacy of radon spa therapy in rheumatoid arthritis-a randomized, sham-controlled study and follow-up. Rheumatology 39:894–902

    Article  CAS  PubMed  Google Scholar 

  6. Mitsunobu F, Yamaoka K, Hanamoto K et al (2003) Elevation of antioxidant enzymes in the clinical effects of radon and thermal therapy for bronchial asthma. J Radiat Res 44:95–99

    Article  CAS  PubMed  Google Scholar 

  7. Yamaoka K, Mitsunobu F, Hanamoto K et al (2005) Effects of radon and thermal therapy on osteoarthritis. Int Congress Ser 1276:249–250

    Article  Google Scholar 

  8. Falkenbach A, Wolter N (1997) Radonthermalstollen-Kur zur Behandlung des Morbius Bechterew. Res Complementary Med 1997:277–283

    Google Scholar 

  9. Kant K (2007) Is exposure to over ground radon as dangerous as they say? In: Sixth LOWRAD Conference, Budapest, Hungary, Abstract, p 67

    Google Scholar 

  10. UNSCEAR (2000) Sources and effects of ionizing radiation. UNSCEAR 2000 Report to the General Assembly, with Scientifi c Annexes. United Nations, New York, p 1220

    Google Scholar 

  11. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation (2005) BEIR VII — phase 2, health risks from exposure to low levels of ionizing radiation, National Research Council (National Academy of Sciences), Washington

    Google Scholar 

  12. Preston DL, Pierce DA, Shimizu Y et al (2004) Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res 162:377–389

    Article  CAS  PubMed  Google Scholar 

  13. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    Article  CAS  PubMed  Google Scholar 

  14. Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  15. Griffey RT, Sodickson A (2009) Cumulative radiation exposure and cancer risk estimates in emergency department patients undergoing repeat or multiple CT. AJR 192:887–892

    Article  PubMed  Google Scholar 

  16. Scott BR, Sanders CL, Mitchel REJ, Boheham DR (2008) CT scans may reduce rather than increase the risk of cancer. J Am Physicians Surg 13:8–11

    Google Scholar 

  17. Kleinerman RA (2006) Cancer risks following diagnosis and therapeutic radiation exposure in children. Pediatr Radiol 36(Suppl 14):121–125

    Article  PubMed  Google Scholar 

  18. Linos A, Gray JE, Orvis AL et al (1980) Low dose radiation and leukemia. N Engl J Med 302:1101–1115

    Article  CAS  PubMed  Google Scholar 

  19. Boice JD, Morin MM, Glass AG et al (1991) Diagnostic X-ray procedures and risk of leukemia, lymphoma and multiple myeloma. JAMA 265:1290–1294

    Article  PubMed  Google Scholar 

  20. Davis FG, Boice JD, Hrubec Z et al (1989) Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res 49:6130–6136

    CAS  PubMed  Google Scholar 

  21. Howe GR (1995) Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fl uoroscopy chart study and a comparison with lung cancer mortality in the atomic bomb survivor study. Radiat Res 142:295–305

    Article  CAS  PubMed  Google Scholar 

  22. Boice JD, Preston D, Davis FG, Monson RR (1991) Frequent chest X-ray fl uoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res 125:214–222

    Article  PubMed  Google Scholar 

  23. Neugut AI, Robinson E, Lee WC et al (1993) Lung cancer after radiation therapy for breast cancer. Cancer 71:3054–3057

    Article  CAS  PubMed  Google Scholar 

  24. Rossi HH, Zaider M (1997) Radiogenic lung cancer: the effects of low doses of low linear energy transfer (LET) radiation. Radiat Environ Biophys 36:85–88

    Article  CAS  PubMed  Google Scholar 

  25. Doll R, Wakeford R (1997) Risk of childhood cancer from fetal irradiation. Br J Radiol 70:130–139

    CAS  PubMed  Google Scholar 

  26. Schulze-Rath R, Hammer GP, Blettner M (2008) Are pre- or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review. Radiat Environ Biophys 47:301–312

    Article  PubMed  Google Scholar 

  27. Franklyn JA, Maisonneuve P, Sheppard M et al (1999) Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: a population-based cohort study. Lancet 353:2111–2115

    Article  CAS  PubMed  Google Scholar 

  28. Goldman MB, Maloof F, Monson RR et al (1988) Radioactive iodine therapy and breast cancer. Am J Epidemiol 127:969–980

    CAS  PubMed  Google Scholar 

  29. Tubiana M (2009) Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol 91:4–15

    Article  PubMed  Google Scholar 

  30. Hanford JM, Quimby EH, Frantz VK (1962) Cancer arising many years after radiation therapy. J Am Med Assoc 181:132–138

    Google Scholar 

  31. Schneider U, Walsh L (2008) Cancer risk estimates from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Radiat Environ Biophys 47:253–263

    Article  PubMed  Google Scholar 

  32. Pifer JW, Toyooka ET, Murray RW et al (1963) Neoplasms in children treated with X rays for thymic enalrgement. I. Neoplasms and mortality. J Natl Cancer Inst 31:1333–1356

    CAS  PubMed  Google Scholar 

  33. Hempelmann LH, Hall WJ, Phillips M et al (1975) Neoplasms in persons treated with X-rays in infancy: fourth survey in 20 years. J Natl Cancer Inst 55:519–530

    CAS  PubMed  Google Scholar 

  34. Hazen RW, Pifer JW, Toyooka ET et al (1966) Neoplasms following irradiation of the head. Cancer Res 26:305–311

    CAS  PubMed  Google Scholar 

  35. Modan B, Bidatz D, Mart H (1974) Radiation-induced head and neck tumors. Lancet 1:277–279

    Article  CAS  PubMed  Google Scholar 

  36. Shore RE, Albert RE, Pasternak BS (1976) Follow-up study of patients treated by X-ray epilation for tinea capitis. Arch Environ Health 31:17–24

    Google Scholar 

  37. Doherty MA, Rodgers A, Langlands AO (1986) Sarcoma of bone following therapeutic irradiation for breast carcinoma. Intern J Radiat Oncol Biol Phys 12:103

    Article  CAS  Google Scholar 

  38. Thomas P et al (1990) Cancer recurrence after resection: T1 N0 non-small cell lung cancer. Ann Thorac Surg 49:242–247

    Article  CAS  PubMed  Google Scholar 

  39. Pastorino U (1994) Results of the Euroscan trial. Lung Cancer 11:94–95

    Article  Google Scholar 

  40. Suit H, Goldberg S, Niemierko A et al (2007) Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in humans, non-human primate, canine and rodent subjects. Radiat Res 167:12–42

    Article  CAS  PubMed  Google Scholar 

  41. Rubino C, de Vathaire F, Shamsaldin A et al (2003) Radiation dose, chemotherapy, hormonal treatment and risk of second cancer after breast cancer treatment. Br J Cancer 89:840–846

    Article  CAS  PubMed  Google Scholar 

  42. Brenner D, Curtis R, Hall E, Ron E (2000) Second malignancies in prostate carcinoa patients after radiotherapy as compared with surgery. Cancer 88:398–406

    Article  CAS  PubMed  Google Scholar 

  43. Pickles T, Phillips N (2002) The risk of second malignancy in men with prostate cancer treated with or without radiation in British Columbia, 1984–2000. Radiother Oncol 65:145–151

    Article  PubMed  Google Scholar 

  44. Kleinerman R, Boice J, Storm H et al (1995) Second primary cancer after treatment for cervical cancer. An International Cancer Registries Study. Cancer 76:442–452

    Article  CAS  PubMed  Google Scholar 

  45. Storm H (1988) Second primary cancer treatment for cervical cancer. Cancer 61:679–688

    Article  CAS  PubMed  Google Scholar 

  46. Arai T, Nakano T, Fukuhisa K et al (1991) Second cancer after radiation therapy for cancer of the uterine cervix. Cancer 67:398–405

    Article  CAS  PubMed  Google Scholar 

  47. Inskip PD, Stovall M, Flannery JT (1994) Lung cancer risk and radiation dose among women treated for breast cancer. J Natl Cancer Inst 86:983–988

    Article  CAS  PubMed  Google Scholar 

  48. Yoshinaga S, Mabuchi K, Sigurdson AJ et al (2004) Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology 233:313–321

    Article  PubMed  Google Scholar 

  49. Matanoski GM, Sternberg A, Elliott EA (1987) Dose radiation exposure produce a protective effect among radiologists? Health Phys 52:637–643

    Article  CAS  PubMed  Google Scholar 

  50. Berrington A, Darby SC, Weiss HA, Doll R (2001) 100 years of observation on British radiologists: mortality from cancer and other causes 1897–1997. Br J Radiol 74:507–519

    CAS  PubMed  Google Scholar 

  51. Mohan AK, Hauptmann M, Freedman DM et al (2003) Cancer and other causes of mortality among radiologic technologists in the United States. Int J Cancer 103:259–267

    Article  CAS  PubMed  Google Scholar 

  52. Miller RW, Jablon S (1970) A search for late radiation effects among men who served as x-ray technologists in the U.S. Army during World War II. Radiology 96:269–274

    CAS  PubMed  Google Scholar 

  53. Andersson M, Engholm G, Ennow K et al (1991) Cancer risk among staff at two radiotherapy departments in Denmark. Br J Radiol 64:455–460

    Article  CAS  PubMed  Google Scholar 

  54. Yoshinaga S, Aoyama T, Yoshimoto Y, Sugahara T (1999) Cancer mortality among radiological teachnologists in Japan: updated analysis of follow-up data from 1969 to 1993. J Epidemiol 9:61–72

    CAS  PubMed  Google Scholar 

  55. Ashmore JP, Krewski D, Zielinski JM et al (1998) First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol 148:564–574

    CAS  PubMed  Google Scholar 

  56. Sont WN, Zielinski JM, Ashmore JP et al (2001) First analysis of cancer incidence and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol 153:309–318

    Article  CAS  PubMed  Google Scholar 

  57. Simon SL, Weinstock RM, Doody MM et al (2006) Estimating historical radiation doses to a cohort of U.S. radiologic technologists. Radiat Res 166:174–192

    Article  CAS  PubMed  Google Scholar 

  58. Cameron JR (2002) Radiation increased the longevity of British radiologists. Br J Radiol 75:637–640

    CAS  PubMed  Google Scholar 

  59. Doody MM, Mandel JS, Lubin JH, Boice JD (1998) Mortality among United States radiologic technologists, 1926–90. Cancer Causes Control 9:67–75

    Article  CAS  PubMed  Google Scholar 

  60. Matisane L (2006) Cancer incidence in female health care workers occupationally exposed to ionizing radiation 1982–2002. Health Phys 90(Suppl):S98

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Medical Exposures and Workers. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics