Skip to main content
  • 747 Accesses

I have always felt that the argument that because at higher vaules of dose an observed effect is proportional to dose, then at very low doses there is necessarily some “effect” of dose, however small, is nonsense [1].

I have always felt that the argument that because at higher vaules of dose an observed effect is proportional to dose, then at very low doses there is necessarily some “effect” of dose, however small, is nonsense [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayneord W (1964) Radiation and health. The Nuffield Provincial Hospital Trust. London, UK

    Google Scholar 

  2. Pollycove M (2002) Radiation hormesis: the biological response to low doses of ionizing radiation. Health Effects of Low-Level Radiation, BNES

    Google Scholar 

  3. Billen D (1990) Spontaneous DNA damage and its significance for the “negligible dose” controversy in radiation protection. Radiat Res 124:242–245

    Article  CAS  PubMed  Google Scholar 

  4. Stewart RD (1999) On the complexity of the DNA damages created by endogenous processes. Radiat Res 152:101–105

    Article  CAS  PubMed  Google Scholar 

  5. Mosmann KL (2007) Radiation risk in perspective. CRC, Taylor and Francis, Boca Raton, FL

    Google Scholar 

  6. Satta L et al (2002) Influence of a low background radiation environment on biochemical and biological responses in V79 cells. Radiat Environ Biophys 41:217–224

    CAS  PubMed  Google Scholar 

  7. Muller HJ (1927) Artificial transmutation of the gene. Science 116:84–87

    Article  Google Scholar 

  8. Oliver CP (1930) The effect of varying the duration of X-ray treatment upon the frequency of mutation. Science 121:44–46

    Article  Google Scholar 

  9. ICRP, Recommendations of the International Commission on Radiological Protection, as amended 1959 and revised 1962 (1964) Publication 6, International Commission on Radiological Protection, Pergamon Press, Oxford

    Google Scholar 

  10. UNSCEAR (1993) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 1993 Report to the General Assembly with Scientific Annexes, United Nations, NY

    Google Scholar 

  11. UNSCEAR (2001) Hereditary effects of radiation. Scientific annex of UNSCEAR 2001 report to the General Assembly, United Nations Scientific Committee on the Effects of Atomic Radiation, Vienna, Austria, p 224

    Google Scholar 

  12. Koana T, Takashima Y, Okada MO et al (2004) A threshold exists in the dose-response relationship for somatic mutation frequency induced by X irradiation of Drosophila. Radiat Res 161:391–396

    Article  CAS  PubMed  Google Scholar 

  13. Koana T, Takashima Y, Okada O et al (2007) Reduction of background mutations by low-dose x irradiation of Drosophila spermatocytes at a low dose rate. Radiat Res 157:217–221

    Article  Google Scholar 

  14. Ogura K, Magae J, Kawakami Y, Koana T (2009) Reduction in mutation frequency by very low-dose gamma irradiation of Drosophila melanogaster germ lines. Radiat Res 171:1–8

    Article  CAS  PubMed  Google Scholar 

  15. Koana T, Okada MO, Ogura K (2007) Reduction of the background mutation by a low dose irradiation of Drosophila spermatocytes at a low dose-rate. 6th LOWRAD Conference, Budapest, Hungary. Abstract, p 72

    Google Scholar 

  16. Yang F, Stenoien DI, Strittmatter EF et al (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose radiation. J Proteome Res 5:1252–1260

    Article  CAS  PubMed  Google Scholar 

  17. Amundson A, Lee RA, Koch-Paiz CA et al (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1:445–452

    CAS  PubMed  Google Scholar 

  18. Franco N, Lamatine J, Frouin V et al (2005) Low-dose exposure to g rays induces specific gene regulations in normal human keratinocytes. Radiat Res 163:623–635

    Article  CAS  PubMed  Google Scholar 

  19. Magae J, Hoshi Y, Furukawa C et al (2003) Quantitative analysis of biological responses to ionizing radiation, including dose, irradiation time, and dose rate. Radiat Res 160:543–548

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura H, Fukami H, Hayashi Y et al (2005) Cytotoxic and mutagenic effects of chronic low-dose-rate irradiation on TERT-immortalized human cells. Radiat Res 163:283–288

    Article  CAS  PubMed  Google Scholar 

  21. Tubiana M, Arengo A, Averbeck D, Masse R (2007) Low-dose risk assessment: comments on the summary of the international workshop. Radiat Res 167:742–744

    Article  CAS  PubMed  Google Scholar 

  22. Saul RL, Ames BN (1986) Background levels of DNA damage in the population. Basic Life Sci 38:529–535

    CAS  PubMed  Google Scholar 

  23. Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21:397–404

    Article  CAS  PubMed  Google Scholar 

  24. Tubiana M, Aurengo A, Averbeck D, Masse R (2008) Letters to the Editor. Low-dose risk assessment: the debate continues. Radiat Res 169:245–248

    Article  Google Scholar 

  25. Leonard BE (2005) Adaptive response by single cell radiation hits-Implications for nuclear workers. Radiat Prot Dosimetry 116:387–391

    Article  CAS  PubMed  Google Scholar 

  26. Leonard BE (2007) Adaptive response and human benefit: Part I — a microdosimetry dose dependent model. Int J Radiat Biol 83:115–131

    Article  CAS  PubMed  Google Scholar 

  27. Leonard BE (2007) Adaptive response: Part II — Modeling for dose rate and time influences. Int J Radiat Biol 83:395–408

    Article  CAS  PubMed  Google Scholar 

  28. Roots R, Chatterjee A, Chang P et al (1985) Characterization of hydroxyl radical-induced damage after sparsely and densely ionizing radiation. Int J Radiat Biol 47:157–166

    Article  CAS  Google Scholar 

  29. Calabrese EJ, Baldwin L (2001) Scientific foundations of hormesis. Crit Rev Toxicol 31:351–624

    Article  Google Scholar 

  30. Luckey TD (1980) Hormesis with ionizing radiation. CRC Press, Boca Raton, FL

    Google Scholar 

  31. Luckey TD (1982) Physiological benefits from low-level ionizing radiation. Health Phys 43:771–789

    Article  CAS  PubMed  Google Scholar 

  32. Wallace SS (1988) AP-endonucleases and DNA-glycosylases that recognize oxidative DNA damage. Environ Mol Mutagen 12:431–477

    CAS  PubMed  Google Scholar 

  33. Luckey TD (1991) Radiation hormesis. CRC Press, Boca Raton, FL

    Google Scholar 

  34. Luckey TD (1999) Nurture with ionizing radiation: a provocative assumption. Nutr Cancer 34:1–11

    Article  CAS  PubMed  Google Scholar 

  35. Pollycove M, Feinendegen LE (2001) Biologic responses to low doses of ionizing radiation: Deteriment versus hormesis. Part 2: Dose responses to organisms. J Nucl Med 42:26N–37N

    CAS  PubMed  Google Scholar 

  36. Pollycove M, Feinendegen LE (1999) Molecular biology, epidemiology and the demise of the linear no-threshold (LNT) assumption. C R Acad Sci Paris Life Sci 322:197–204

    CAS  Google Scholar 

  37. Pollycove M (1998) Nonlinearity of radiation health effects. Environ Health Perspect 106:363–368

    Article  PubMed  Google Scholar 

  38. Gonzalgo ML, Jones PA (1997) Mutagenic and epigenetic effects of DNA methylation. Mutat Res 386:107–118

    Article  CAS  PubMed  Google Scholar 

  39. Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Ann Rev Pharmacol Toxicol 45:629–656

    Article  CAS  Google Scholar 

  40. Tapio S, Jacob V (2007) Radioadaptive response revisited. Radiat Enviorn Biophys 46:1–12

    Article  CAS  Google Scholar 

  41. Aurengo A, Averbeck D, Bonnin A et al (2005) Dose-effect relationships and estimation of the carcinogenic effects of low doses of ionizing radiation. Executive Summary. French Academy of Sciences, French National Academy of Medicine

    Google Scholar 

  42. Bhattacherjee G, Ito A (2001) Deceleration of carcinogenic potential by adaptation with low dose gamma irradiation. In Vivo 15:87–92

    Google Scholar 

  43. Ibuki Y, Goto R (1994) Adaptive response to low doses of gamma-ray in Chinese hamster cells: determined by cell survival and DNA synthesis. Biol Pharm Bull 17:1111–1113

    CAS  PubMed  Google Scholar 

  44. Ikushima T, Aritomi H, Morisita J (1996) Radioadaptive response: Efficient repair of radiation-induced DNA damage in adapted cells. Mutat Res 358:193–198

    PubMed  Google Scholar 

  45. Scott BR (2007) Low-dose radiation-induced protective process and implications for risk assessment, cancer prevention, and cancer therapy. Dose Response 5:131–141

    Article  CAS  PubMed  Google Scholar 

  46. Scott BR (2005) Stochastic thresholds: a novel explanation of nonlinear dose-response relationships. Dose Response 3:547–567

    Article  CAS  Google Scholar 

  47. Collis SJ, Schwaninger JM, Ntambi AJ et al (2004) Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem 279:49624–49632

    Article  CAS  PubMed  Google Scholar 

  48. Kant K, Chauhan RP, Sharma GS et al (2003) Hormesis in humans exposed to low-level ionizing radiation. Int J Low Radiat 1:76–87

    Article  Google Scholar 

  49. Feinendegen LE, Paratzke HG, Neumann RD (2007) Damage propagation in complex biological systems following exposure to low doses of ionising radiation. Atoms for Peace: An International Journal 1:336–354

    Article  Google Scholar 

  50. Wolff S, Afzal V, Jostes RF et al (1993) Indications of repair of radon-induced chromosome damage in human lymphocytes: an adaptive response induced by low doses of X-rays. Environ Health Perspect 101(Suppl 3):73–77

    Article  CAS  PubMed  Google Scholar 

  51. Mitchel REJ (2006) Cancer and low dose response in vivo: implications for radiation protection. Can Nucl Soc Bull 27:23–26

    Google Scholar 

  52. Olivieri G, Bodycote J, Wolff S (1984) Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science 223:594–597

    Article  CAS  PubMed  Google Scholar 

  53. Sasaki MS (1995) On the reaction kinetics of the radioadaptive response in cultured mouse cells. Int J Radiat Biol 68:281–291

    Article  CAS  PubMed  Google Scholar 

  54. Cramers P, Atanasova P, Vrolijk H et al (2005) Pre-exposure to low doses: modulation of X-ray-induced DNA damage and repair? Radiat Res 164:383–390

    Article  CAS  PubMed  Google Scholar 

  55. Shadley JD, Wolff S (1987) Very low doses of X-rays can cause human lymphocytes to become less susceptible to ionizing radiation. Mutagenesis 2:95–96

    Article  CAS  PubMed  Google Scholar 

  56. Wang B, Ohyama H, Shang Y et al (2004) Adaptive response in embryogenesis: V. Existence of two efficient dose-rate ranges for 0.3 Gy of priming irradiation to adapt mouse fetuses. Radiat Res 161:264–272

    Article  CAS  PubMed  Google Scholar 

  57. Little JB (2006) Lauriston S. Taylor lecture: nontargeted effects of radiation: implications for low-dose exposures. Health Phys 91:416–426

    Article  CAS  PubMed  Google Scholar 

  58. Schollnberger H, Mitchel REJ, Redpath JL et al (2007) Detrimental and protective bystander effects: A model approach. Radiat Res 168:614–626

    Article  CAS  PubMed  Google Scholar 

  59. Belyakov O V, Folkard M, Mothersill C et al (2002) Bystander-induced apoptosis and premature differentiation in primary urothelial explants after charged particle microbeam irradiation. Radiat Prot Dosimetry 99:249–251

    CAS  PubMed  Google Scholar 

  60. Lyng FM, Seymour CB, Mothersill C (2000) Production of a signal by irradiated cells which leads to a response in unirradiated cells characteristic of initiation of apoptosis. Br J Cancer 83:1223–1230

    Article  CAS  PubMed  Google Scholar 

  61. Portess DI, Bauer G, Hill MA et al (2007) Low dose irradiation of non-transformed cells stimulates the selective removal of pre-cancerous cells via intercellular induction of apopto-sis. Cancer Research 67:1246–1253

    Article  CAS  PubMed  Google Scholar 

  62. Zhou H, Randers-Pehrson G, Geard CR et al (2003) Interaction between radiation-induced adaptive response and bystander mutagenesis in mammalian cells. Radiat Res 160:512–516

    Article  CAS  PubMed  Google Scholar 

  63. Leonard BE (2008) Letters to the Editor. Common sense about the linear no-threshold controversy-give the general public a break. Radiat Res 169:245–248

    Article  CAS  PubMed  Google Scholar 

  64. Mothersill C, Seymour CB (2006) Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective. Mutat Res 59:5–10

    Google Scholar 

  65. Laval F (1988) Pretreatment with oxygen species increases the resistance of mammalian cells to hydrogen peroxide and gamma rays. Mutat Res 201:73–79

    CAS  PubMed  Google Scholar 

  66. Kojima S, Ishida H, Takahashi M et al (2002) Elevation of glutathione induced by low-dose gamma rays and its involvement in increased natural killer activity. Radiat Res 157:275–280

    Article  CAS  PubMed  Google Scholar 

  67. McCord JM (2008) Superoxide dismutase, lipid peroxidation, and bell-shaped dose response curves. Dose Response 6:223–238

    Article  CAS  PubMed  Google Scholar 

  68. Otsuka k, Koana T, Tauchi H, Sakai K (2006) Activation of antioxidative enzymes induced by low-dose-rate whole-body γ irradiation: adaptive response in terms of initial DNA damage. Radiat Res 166:474–478

    Article  CAS  PubMed  Google Scholar 

  69. Radak Z, Chung H Y, Goto S (2005) Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 6:71–75

    Article  CAS  PubMed  Google Scholar 

  70. Pant MC, X-Y Liao QLu et al (2003) Mechanisms of suppression of neoplastic transformation in vitro by low doses of low LET radiation. Carcinogenesis 24:1961–1965

    Article  CAS  PubMed  Google Scholar 

  71. Ghiassi-nejad M, Mortazavi SM, Cameron JR et al (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82:87–93

    Article  CAS  PubMed  Google Scholar 

  72. Masoomi JR, Mohammadi S, Amini M et al (2006) High background radiation areas of Ramsar in Iran: evaluation of DNA damage by alkaline single cell gel electrophoresis (SCGE). J Environ Radioact 86:176–186

    Article  CAS  PubMed  Google Scholar 

  73. Gajendiran N, Tanaka K, Kumaravel TS et al (2001) Neutron-induced adaptive response studied in G0 human lymphocytes using the comet assay. J Radiat Res 42:91–101

    Article  CAS  PubMed  Google Scholar 

  74. Padovani L, Appolloni M, Anzidei P et al (1995) Do human lymphocytes exposed to the fallout of Chernobyl accident exhibit an adaptive response? 1. Challenge with ionizing radiation. Mutat Res 332:33–38

    CAS  PubMed  Google Scholar 

  75. Tedeschi B, Caporossi D, Vernole P et al (1995) Do human lymphocytes exposed to the fallout of Chernobyl accident exhibit an adaptive response? 2. Challenge with bleomycin. Mutat Res 332:39–44

    CAS  PubMed  Google Scholar 

  76. Barquinero JF, Barrios L, Caballin MR et al (1995) Occupational exposure to radiation induces an adaptive response in human lymphocytes. Int J Radiat Biol 67:187–191

    Article  CAS  PubMed  Google Scholar 

  77. Gourabi H, Mozdarani H (1998) A cytokinesis-blocked micronucleus study of the radioadap-tive response of lymphocytes of individuals occupationally exposed to chronic doses of radiation. Mutagenesis 13:475–480

    Article  CAS  PubMed  Google Scholar 

  78. Thierens H, Vral A, Barbe M et al (2002) Chromosomal radiosensitivity study of temporary nuclear workers and the support of the adaptive response induced by occupational exposure. Int J Radiat Biol 78:1117–1126

    Article  CAS  PubMed  Google Scholar 

  79. United Nations (2000) United Nations Scientific Committee on the effects of atomic radiation. Sources, effects and risks of ionizing radiation. United Nations, New York

    Google Scholar 

  80. Grillo CA, Dulout FN, Guerci AM (2009) Evaluation of radioadaptive response induced in CH-K1 cells in a non-traditional model. Int J Radiat Biol 85:159–166

    Article  CAS  PubMed  Google Scholar 

  81. Shadley JD (1994) Chromosomal adaptive response in human lymphocytes. Radiat Res 138(Suppl):S9–S12

    Article  CAS  PubMed  Google Scholar 

  82. Pohl-Ruling J, Fischer P, Haas O et al (1983) Effect of low-dose acute x-irradiation on the frequencies of chromosomal aberrations in human peripheral lymphocytes in vitro. Mut Res 110:71–82

    CAS  Google Scholar 

  83. Livingston GK, Falk RB, Schmid E (2006) Effect of occupational radiation exposures on chromosome aberration rates in former plutonium workers. Radiat Res 166:89–97

    Article  CAS  PubMed  Google Scholar 

  84. Day TK, Zeng G, Hooker AM et al (2006) Extremely low priming doses of X radiation induce an adaptive response for chromosomal inversions in pKZ1 mouse prostate. Radiat Res 166:757–766

    Article  CAS  PubMed  Google Scholar 

  85. Broome EJ, Brown DL, Mitchell REJ (1999) Adaptation to radiation alters biases in DNA repair at the chromosome level. Int J Radiat Biol 75:681–690

    Article  CAS  PubMed  Google Scholar 

  86. de Toledo SM, Asaad N, Ventkatachalam P et al (2006) Adaptive responses to low-dose/low-dose-rate g rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism. Radiat Res 166:849–857

    Article  PubMed  Google Scholar 

  87. Azzam EI, Raaphorst GP, Mitchel REJ (1994) Radiation-induced adaptive response for protection against micronucleus formation and neoplastic transformation in C3H 10t1/2 mouse embryo cells. Radiat Res 138:S28–S31

    Article  CAS  PubMed  Google Scholar 

  88. Elmore E, Lao X-Y, Kapadia R et al (2006) The effect of dose rate on radiation-induced neoplastic transformation in vitro by low doses of low-LET radiation. Radiat Res 166:832–838

    Article  CAS  PubMed  Google Scholar 

  89. Elmore E, Lao X-Y, Kapadia R et al (2008) Low doses of very low-dose-rate low-LET radiation suppress radiation-induced neoplastic transformation in vitro and induce an adaptive response. Radiat Res 169:311–318

    Article  CAS  PubMed  Google Scholar 

  90. Azzam EI, De Toledo SM, Raaphorst GP et al (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res 146:369–373

    Article  CAS  PubMed  Google Scholar 

  91. Elmore E, Lao X-Y, Kapadia R, Redpath JL (2009) Threshold-type dose response for induction of neoplastic transformation by 1 GeV/nucelon iron ions. Radiat Res 171:764–770

    Article  CAS  PubMed  Google Scholar 

  92. Redpath JL, Lu Q, Lao X-Y et al (2003) Low doses of diagnostic energy X-rays protect against neoplastic transformation in vitro. Int J Radiat Biol 79:235–240

    Article  CAS  PubMed  Google Scholar 

  93. Redpath JL (2006) Suppression of neoplastic transformation in vitro by low doses of low let radiation. Dose Response 4:302–308

    Article  CAS  PubMed  Google Scholar 

  94. Kadhim MA, Hill MA, Moore SR (2006) Genomic instability and the role of radiation quality. Radiat Prot Dosimetry 122:221–227

    Article  CAS  PubMed  Google Scholar 

  95. Okada M, Okabe A, Uchihori Y et al (2007) Single extreme low dose/low dose rate irradiation causes alteration in lifespan and genome instability in primary human cells. Br J Cancer 96:1707–1710

    Article  CAS  PubMed  Google Scholar 

  96. Redpath JL, Liang D, Taylor TH et al (2001) The shape of the of the dose-response curve for radiation-induced neoplastic transformation. Evidence for an adaptive response against neo-plastic transformation at low doses of low-LET radiation. Radiat Res 156:700–707

    Article  CAS  PubMed  Google Scholar 

  97. Scott BR (2007) Low-dose radiation-induced protective process and implications for risk assessment, cancer prevention, and cancer therapy. Dose Response 5:131–141

    Article  CAS  PubMed  Google Scholar 

  98. Thompson HJ, Strange R, Schedin PJ (1992) Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol Biomarkers prev 1:597–602

    CAS  PubMed  Google Scholar 

  99. Reed JC (2003) Apoptosis-targeted therapies for cancer. Cancer Cell 3:17–22

    Article  CAS  PubMed  Google Scholar 

  100. Reed JC, Doctor KS, Godzik A The domains of apoptosis: A genomics perspective. Science STKE 29 June 2004/239,/re9.

    Google Scholar 

  101. Mitchel REJ (2007) Low doses of radiation reduce risk in vivo. Dose Response 5:1–10

    Article  CAS  Google Scholar 

  102. Stephens LC, Kang K, Schultheiss TE et al (1991) Apoptosis in irradiated murine tumors. Radiat Res 127:308–316

    Article  CAS  PubMed  Google Scholar 

  103. Redpath JL, Short SC, Woodcock M et al (2003) Low-dose reduction in transformation frequency compared to unirradiated controls: the role of hyper-radiosensitivity to cell death. Radiat Res 159:433–436

    Article  CAS  PubMed  Google Scholar 

  104. Scott BR, JDi Palma (2006) Sparsely ionizing diagnostic and natural background radiations are likely preventing cancer and other genomic-instability-associated disease. Dose Response 5:230–255

    Article  PubMed  CAS  Google Scholar 

  105. Bauer G (2007) Low dose radiation and intercellular induction of apoptosis: potential implications for control of oncogenesis. Int J Radiat Biol. 83:873–888

    Article  CAS  PubMed  Google Scholar 

  106. Liu SZ (2003) Nonlinear dose-response relationship in the immune system following exposure to ionizing radiation: mechanisms and implications. Nonlinearity Biol Toxicol Med 1:71–92

    Article  CAS  PubMed  Google Scholar 

  107. Liu S (2007) Cancer control related to stimulation of immunity by low-dose radiation. Dose Response 5:39–47

    Article  CAS  Google Scholar 

  108. Sanders CL, Scott BR (2008) Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response 6:53–79

    Article  CAS  Google Scholar 

  109. Scott BR (2007) Hormesis and the control of genomic instability. In: New Research on Genomic Instability (preliminary title). Nova Science Publishers, Inc. Hauppage, NY (in press).

    Google Scholar 

  110. Ina Y, Sakai K (2005) Further study of prolongation of life span associated with immunologi-cal modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice. Effects of whole-life irradiation. Radiat Res 163:418–423

    Article  CAS  PubMed  Google Scholar 

  111. Mitchel REJ, Gragtmans NJ, Morrison DP (1999) Beta-radiation-induced resistance to MNNG initiation of papilloma but not carcinoma formation in mouse skin. Radiat Res 121:180–186

    Article  Google Scholar 

  112. Sakai K, Hoshi Y, Nomura T et al (2003) Suppression of carcinogenic processes in mice by chronic low dose rat gamma-irradiation. Int J Low Radiat 1:142–146

    Article  Google Scholar 

  113. Monchaux G, Morlier JP, Morin M et al (1994). Carcinogenic and cocarcinogenis effects of radon and radon daughters in rats. Environ Health Perspect 102:64–7

    CAS  PubMed  Google Scholar 

  114. Stephens LC, Kang K, Schultheiss TE et al (1991) Apoptosis in irradiated murine tumors. Radiat Res 127:308–316;

    Article  CAS  PubMed  Google Scholar 

  115. Thompson HJ, Strange R, Schedin PJ (1992) Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol Biomarkers Prev 1:597–602

    CAS  PubMed  Google Scholar 

  116. Hill MA (2007) The relevance of radiation track structure at low dose and dose rates. 6th LOWRAD Conference, Budapest, Hungary. Abstract, p 59

    Google Scholar 

  117. Mackinodan T, James SJ (1990) T cell potentiation by low dose ionizing radiation: possible mechanisms. Health Phys 59:29–34

    Article  Google Scholar 

  118. Taliafero WH, Taliafero LG (1969) Effects of radiation on the initial and anamnestic IgM hemolysin responses in rabbits: antigen injection after X-rays. J Immunol 103:559–569

    Google Scholar 

  119. Taliafero WH, Taliafero LG (1970) Effects of irradiation on initial and anamnestic hemolysin responses in rabbits: antigen injection before X-rays. J Immunol 104:1364–1376

    Google Scholar 

  120. Hoffsten PE, Dixon FJ (1974) Effect of irradiation and cyclophosphamide on antiKLH antibody formation in mice. J Immunol 112:564–572

    CAS  PubMed  Google Scholar 

  121. Anderson RE, Lefkovitz I (1979) In vitro evaluation of radiation-induced augmentation of the immune response. Am J Pathol 97:456–472

    CAS  PubMed  Google Scholar 

  122. Anderson RE, Lefkovitz I (1980) Effects of irradiation on the in vitro immune response. Exp Cell Biol 48:255–278

    CAS  PubMed  Google Scholar 

  123. Anderson RE, Tokuda S, Williams WL, Spellman CW (1986) Low dose irradiation permits immunization of A/J mice with subimmunogenic numbers of Sal cells. Brit J Cancer 54:505

    CAS  PubMed  Google Scholar 

  124. Liu SZ, Liu WH, Sun JB (1987) Radiation hormesis: its expression in the immune system. Health Phys 52:579–583

    Article  CAS  PubMed  Google Scholar 

  125. Liu SZ, YC Zhang YMu et al (1996) Thymocyte apoptosis in response to low-dose radiation. Mutation Res 358:185–191

    PubMed  Google Scholar 

  126. Yu Y, Greenstock CL, Trivedi A, Mitchel REJ (1996) Occupational levels of radiation exposure induce surface expression of interleukin-2 receptors in stimulated human peripheral blood lymphocytes. Rad Environ Biophys 35:89–93

    Article  Google Scholar 

  127. Ibuki Y, Goto R (1994) Enhancement of cocoavalin A-induced proliferation of spleno-lymphocytes by low-dose-irradiated macrophages. J Rad Res 35:83–91

    Article  CAS  Google Scholar 

  128. Upton AC (2001) Radiation hormesis: data and interpretations. Crit Rev Toxicol 31:681–695

    Article  CAS  PubMed  Google Scholar 

  129. Li W, Wang G, Chi J et al (2004) Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Exper Hematol 32:1088–1096

    Article  CAS  Google Scholar 

  130. Liu XD, Liu SZ, Ma SM, Liu Y (2001) Opposite changes of Il-10 and IL-12 expression in mice after low dose whole-body X-irradiation. J Radiat Res Radiat Prot 19:253–258

    Google Scholar 

  131. Shan Y-X, Jin S-Z, Liu X-D et al (2007) Ionizing radiation stimulates secretion of pro-inflammatory cytokines: dose-response relationship, mechanisms and implications. Radiat Environ Biophys 46:21–29

    Article  CAS  PubMed  Google Scholar 

  132. Fan XH, Liu SZ JNBUMS 1989, 15:551; YG Yang, SZ LIU. JNBUMS 1989, 15(Suppl):11

    Google Scholar 

  133. Cheda A, Nowosielska EM, Wrembel-Wargocka J, Janiak MK (2008) Production of cytok-ines by peritoneal macrophages and splenocytes after exposures of mice to low doses of X-rays. Radiat Enviorn Biophys 47:275–283

    Article  CAS  Google Scholar 

  134. Seegenschmiedt MH, Katalinic A, Makoski HB et al (1999) Radiotherapy of benign diseases: A pattern of care study in Germany. Strahlenther Onkol 175:541–547

    Article  CAS  PubMed  Google Scholar 

  135. Micke O, Seegenschmiedt MH (2002) Consensus guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513

    PubMed  Google Scholar 

  136. Arenas M, Gil F, Gironella M et al (2006) Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice. Int J Radiat Oncol Biol Phys 66:560–567

    CAS  PubMed  Google Scholar 

  137. Tsukimoto M, Homma T, Mutou Y, Kojima S (2009) 0.5 Gy gamma radiation suppresses production of TNF-α through up-regulation of MKP-1 in mouse macrophage RAW264.7 cells. Radiat Res 171:219–224

    Article  CAS  PubMed  Google Scholar 

  138. Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nature Immunol 3:1129–1134

    Article  CAS  Google Scholar 

  139. Yu H-S, Song A-Q, Lu Y-D et al (2004) Effects of low-dose radiation on tumor growth, erythrocyte immune function and SOD activity in tumor-bearing mice. Chinese Med J 117:1036–1039

    CAS  Google Scholar 

  140. Takahashi M, Kojima S, Yamaoka K et al (2000) Prevention of type I diabetes by low-dose gamma irradiation in NOD mice. Radiat Res 154:680–685

    Article  CAS  PubMed  Google Scholar 

  141. Luckey TD (1997) Low-dose irradiation reduces cancer death. Rad Prot Manage 14:58–64

    CAS  Google Scholar 

  142. Hrycek A, Czernecka-Micinski A, Klucinski P et al (2002) Peripheral blood lymphocytes and selected serum interleukins in workers operating X-ray equipment. Toxicol Lett 132:101–107

    Article  CAS  PubMed  Google Scholar 

  143. Attar M, Kondolousy YM, Khansari N (2007) Effect of high dose natural ionizing radiation on the immune system of the exposed residents of Ramsar Town, Iran. Iran J Allergy Asthma Immunol 6:73–78

    CAS  PubMed  Google Scholar 

  144. Tubiana M, Feinendegen LE, Yang C, Kaminski JM (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22

    Article  PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Molecular and Cellular Mechanisms. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics