Skip to main content
  • 766 Accesses

The precautionary principle [1] is invoked by LNT supporters in the belief that low-dose radiation causes irreversible harm to the public. LNT protagonists conclude that there is an absence of a scientific consensus and places the burden of proof on advocates of radiation hormesis. They then proceed to ignore the overwhelming body of proof that the LNT assumption is diametrically wrong in predicting risk of cancer at low doses, and continue to unrealistically lower radiation standards with a conscience unwilling to examine the myriad benefits of low dose, low dose-rate, low LET ionizing radiation.

The LNT model is scientifically indefensible, yet is still used because of its simplicity and convenience [2,103]. “In order to make them believe the LNT dogma, radiobiologists have consistently misled students, physicians, professors, the media, the public, government advisory boards, and heads of nations” [3]. Radiation protection is in the pay of the LNT and the price that we are paying in terms of human life, resources and money is very high. The unethical behavior and pronouncements of many radioprotection groups and individuals needs to be questioned and openly debated [4, 5].

The hormetic model is not an exception to the rule – it is the rule

(Edward Calabrese)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://en.wikipedia.org/wiki/Precautionary_principle

  2. Scott BR (2008) It's time for a new low-dose-radiation risk assessment paradigm — one that acknowledges hormesis. Dose Response 6:333–51

    Article  PubMed  Google Scholar 

  3. Luckey TD (2008) Atomic bomb health benefits. Dose Response 6:369–82

    Article  CAS  PubMed  Google Scholar 

  4. Cuttler JM (2007) What becomes of nuclear risk assessment in light of radiation hormesis? Dose Response 5:80–90

    Article  Google Scholar 

  5. Jaworowski Z (1999) Radiation risk and ethics. Phys Today 52:24–29

    Article  CAS  Google Scholar 

  6. Becker K (2006) Regulatory low dose limits: from science to political correctness? Int J Low Radiat 3:159–65

    Article  Google Scholar 

  7. Calabrese EJ (2009) The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment. Arch Toxicol 83:203–25

    Article  CAS  PubMed  Google Scholar 

  8. Tubiana M, Aurengo A, Averbeck D et al (2005) Dose-effect relationships and the estimation of the carcinogenic effects of low doses of ionizing radiation. Joint Report of the French National Academies of Science and of Medicine, Edition Nucleon, Paris

    Google Scholar 

  9. Cuttler JM, Pollycove M (2009) Nuclear energy and health. Dose Response 7:52–89

    Article  CAS  PubMed  Google Scholar 

  10. Calabrese EJ (2009) Getting the dose-response wrong: why hormesis became marginalized and the threshold model accepted. Arch Toxicol 83:227–47

    Article  CAS  PubMed  Google Scholar 

  11. Griffey RT, Sodickson A (2009) Cumulative radiation exposure and cancer risk estimates in emergency department patients undergoing repeat or multiple CT. AJR 192:887–92

    Article  PubMed  Google Scholar 

  12. Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357:2277–84

    Article  CAS  PubMed  Google Scholar 

  13. Scott BR, Sanders CL, Mitchel REJ, Boreham DR (2008) CT scans may reduce rather than increase the risk of cancer. J Am Phys Surg 13:7–10

    Google Scholar 

  14. Jaworowski A (2008) The paradigm that failed. Int J Low Radiat 5:151–5

    Article  Google Scholar 

  15. Shimitzu Y, Kato H, Schull WJ (1990) Studies on the mortality of A-bomb survivors. 9. Mortality, 1950–1985; Part 2. Cancer mortality based on the recently revised doses (DS86). Radiat Res 121:120–41

    Article  Google Scholar 

  16. Chen WL, Luan YC, Shieh MC et al (2007) Effects of cobalt-60 exposure on health of Taiwan residents suggest new approach needed in radiation protection. Dose Response 5:63–75

    Article  CAS  Google Scholar 

  17. Duport P (2003) A database of cancer induction by low dose radiation in mammals: overview and initial observations. Int J Low Radiat 1:120–31

    Article  Google Scholar 

  18. Sanders CL, Scott BR (2008) Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response 6:53–79

    Article  CAS  Google Scholar 

  19. Rowlands RE, Stheney AF, Lucas HF (1983) Dose-response relationships for radium-induced bone sarcomas. Health Phys 44(Suppl 1):15–31

    Google Scholar 

  20. Bruske-Hohfeld I, Rosario AS, Wolke G et al (2006) Lung cancer risk among former uranium miners of the Wismut Company in Germany. Health Phys 90:208–16

    Article  CAS  Google Scholar 

  21. Berrington A, Darby SC, Weiss HA et al (2001) 100 years of observation on British radiologists: mortality from cancer and other causes 1987–1997. Br J Radiol 74:507–19

    CAS  PubMed  Google Scholar 

  22. Tubiana M (2009) Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol 91:1

    Article  Google Scholar 

  23. Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64

    Article  CAS  PubMed  Google Scholar 

  24. Little MP, Muirhead CR (2000) Derivation of low dose extrapolation factors from analysis of the curvature in the cancer incidence dose response in Japanese atomic bomb survivors. Int J Radiat Biol 76:939–53

    Article  CAS  PubMed  Google Scholar 

  25. Mortazavi SMJ, Ghiassi-Nejad M, Rezaiean M (2005) Cancer risk due to exposure to high levels of natural radon in the inhabitants of Ramsar, Iran. Int Cong Ser 1276:436–7

    Article  Google Scholar 

  26. Mays CW, Spiess H, Gerspach A (1978) Skeletal effects following 224Ra injections into humans. Health Phys 35:83–90

    Article  CAS  PubMed  Google Scholar 

  27. Gilliland FD, Hunt WC, Archer VE et al (2000) Radon progeny exposure and lung cancer risk among non-smoking uranium miners. Health Phys 79:365–72

    Article  CAS  PubMed  Google Scholar 

  28. Roscoe RJ, Steenland K, Halperin WE (1989) Lung cancer mortality among nonsmoking uranium miners exposed to radon daughters. J Am Med Assoc 262:629–33

    Article  CAS  Google Scholar 

  29. Kostyuchenko VA, Krestina LYu (1994) Long-term irradiation effects in the population evacuated from the East-Urals radioactive trace area. Sci Total Environ 142:119–25

    Article  CAS  PubMed  Google Scholar 

  30. Ivanov VK, Gorski AI, Maksioutov MA et al (2001) Mortality among the Chernobyl emergency workers: estimation of radiation risks (preliminary analysis). Health Phys 81:514–21

    Article  CAS  PubMed  Google Scholar 

  31. Tanooka H (2004) Threshold dose problems in radiation carcinogenesis: a review of non-tumour doses. Int J Low Radiat 1:329–33

    Google Scholar 

  32. Davis FG, Boice JD, Hrubec Z et al (1989) Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res 49:6130–6

    CAS  PubMed  Google Scholar 

  33. Howe GR (1995) Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy chart study and a comparison with lung cancer mortality in the atomic bomb survivor study. Radiat Res 142:295–305

    Article  CAS  PubMed  Google Scholar 

  34. Franklyn JA, Maisonneuve P, Sheppard M et al (1999) Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: a population-based cohort study. Lancet 353:2111–5

    Article  CAS  PubMed  Google Scholar 

  35. Vrijheid M, Cardis E, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: design, epidemiological methods and descriptive results. Radiat Res 167:361–79

    Article  CAS  PubMed  Google Scholar 

  36. Gregoire O, Cleland MR (2006) Novel approach to analyzing the carcinogenic effect of ionizing radiation. Int J Radiat Biol 82:13–9

    Article  CAS  PubMed  Google Scholar 

  37. Okamoto K (1987) Critical values of linear energy transfer, dose rates and doses for radiation hormesis. Health Phys 52:671–4

    Article  CAS  PubMed  Google Scholar 

  38. Tubiana M, Feinendegen LE, Yang C, Kaminski JM (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22

    Article  PubMed  Google Scholar 

  39. BEIR I Committee. (1972) The effect on populations of exposure to low level of ionizing radiation. National Academy Press, Washington, DC

    Google Scholar 

  40. Land CE (1980) Estimating cancer risks from low doses of ionizing radiation. Science 209:1197–203

    Article  CAS  PubMed  Google Scholar 

  41. Shimizu Y, Kato H, Schull WJ, Mabuchi K (1992) Dose-response analysis among atomic-bomb survivors exposed to low-level radiation. In: Gugahara T, Sagan L, Y Aoyama (eds) Low dose irradiation and biologic defense mechanisms. Excerpta Medica, Amsterdam, pp 71–4

    Google Scholar 

  42. Mettler FA, Moseley RD (1985) Medical effects of ionizing radiation. Grune and Stratton, Orlando

    Google Scholar 

  43. Kondo S (1993) Health effects of low level radiation. Kinki University Press, Osaka, Japan

    Google Scholar 

  44. Enflo A (2002) Lung cancer risks from residential radon among smokers and non-smokers. J Radiol Prot 22:A95–9

    Article  CAS  PubMed  Google Scholar 

  45. Rossi HH, Zaider M (1997) Radiogenic lung cancer: the effects of low doses of low linear energy transfer (LET) radiation. Radiat Environ Biophys 36:85–8

    Article  CAS  PubMed  Google Scholar 

  46. Tokarskaya ZB, Zhuntova G V, Scott BR et al (2006) Influence of alpha and gamma radiations and non-radiation risk factors on the incidence of malignant liver tumors among Mayak workers. Health Phys 91:296–310

    Article  CAS  PubMed  Google Scholar 

  47. Van Kaick G, Wesc H, Luhrs H et al (1991) Neoplastic diseases induced by chronic alpha irradiation. Epidemiological, biophysical and clinical results by the German Thoratrast study. J Radiat Res 32:20–33

    Article  PubMed  Google Scholar 

  48. Tokarskaya ZB, Okladnikova ND, Belyaeva ZD et al (1997) Multifactorial analysis of lung cancer dose-response relationships for workers at the Mayak nuclear enterprise. Health Phys 73:899–905

    Article  CAS  PubMed  Google Scholar 

  49. Michor F, Iwasa Y, Nowak M (2004) Dynamics of cancer progression. Nat Rev Cancer 4:197–205

    Article  CAS  PubMed  Google Scholar 

  50. Xiang-Zhen X, Lubin JH, Jun-Yao L et al (1993) A cohort study in southern China of tin miners exposed to radon and radon decay products. Health Phys 64:120–31

    Article  Google Scholar 

  51. Luckey TD (1980) Hormesis with ionizing radiation. CRC, Boca Raton, FL

    Google Scholar 

  52. Luckey TD (1991) Radiation hormesis. CRC, Boca Raton, FL

    Google Scholar 

  53. Luckey TD (2007) Documented optimum and threshold for ionizing radiation. Int J Nucl Law 1:378–409

    Article  Google Scholar 

  54. Calabrese EJ, Staudenmayer JW, Stanek EJ, Hoffmann GR (2006) Hormesis outperforms threshold model in National Cancer Institute antitumor drug screening database. Toxicol Sci 94:368–78

    Article  CAS  PubMed  Google Scholar 

  55. Calabrese EJ, Baldwin LA (2000) Radiation hormesis: Its historical foundations as a biological assumption. Hum Exp Toxicol 19:41–75

    Article  CAS  PubMed  Google Scholar 

  56. Calabrese EJ, Baldwin LA (2003) The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol Sci 71:246–50

    Article  CAS  PubMed  Google Scholar 

  57. Calabrese EJ (2005) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:378–411

    Article  CAS  Google Scholar 

  58. Calabrese EJ (2002) Hormesis: changing view of the dose response: a personal account of the history and current status. Mutat Res 511:181–9

    Article  CAS  PubMed  Google Scholar 

  59. Calabrese EJ, Baldwin LA (2001) Hormesis: a generalizable and unifying assumption. Crit Rev Toxicol 31:353–424

    Article  CAS  PubMed  Google Scholar 

  60. Calabrese EJ, Baldwin LA (2001) The frequency of U-shaped dose responses in the toxico-logical literature. Toxicol Sci 62:330–33

    Article  CAS  PubMed  Google Scholar 

  61. Southam CM, Erhlich J (1943) Effects of extracts of Western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517–24

    Google Scholar 

  62. Sanders CL (2006) Hormesis as a confounding factor in epidemiological studies of radiation carcinogenesis. Korean Assoc Radiat Prot 31:69–89

    CAS  Google Scholar 

  63. Scott BR (2008) Low-dose-radiation stimulated natural chemical and biological protection against lung cancer. Dose Respnse 6:299–318

    Article  CAS  Google Scholar 

  64. Olivieri G, Bodycote J, Wolff S (1984) Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science 23:594–7

    Article  Google Scholar 

  65. Azzam EI, Raaphorst GP, Mitchell RE (1994) Radiation-induced adaptive response for protection against micronucleus formation and neoplastic transformation in C3H 10T1/2 mouse embryo cells. Radiat Res 138:S28–S31

    Article  CAS  PubMed  Google Scholar 

  66. Day TK, Zheng G, Hooker AM et al (2006) Extremely low priming doses of X radiation induced adaptive response for chromosomal inversions in pKZ1 mouse prostate. Radiat Res 166:757–66

    Article  CAS  PubMed  Google Scholar 

  67. Day TK, Zheng G, Hooker AM et al (2007) Adaptive response for chromosomal inversions in pKZ1 mouse prostate induced by low doses of X radiation delivered after a high dose. Radiat Res 167:682–92

    Article  CAS  PubMed  Google Scholar 

  68. Azzam EI, de Toledo SM, Raaphorst GP, Mitchel RE (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res 146:369–73

    Article  CAS  PubMed  Google Scholar 

  69. Redpath JL, Liang D, Taylor TH et al (2001) The shape of the dose-response curve for radiation-induced neoplastic transformation in vitro: evidence for an adaptive response against neo-plastic transformation at low doses of low-LET radiation. Radiat Res 156:700–7

    Article  CAS  PubMed  Google Scholar 

  70. Liu S-Z (2007) Cancer control related to stimulation of immunity by low-dose radiation. Dose Response 5:39–47

    Article  CAS  Google Scholar 

  71. Ina Y, Sakai K (2005) Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: analysis of immune cell populations and surface molecules. Int J Radiat Biol 81:721–9

    Article  CAS  PubMed  Google Scholar 

  72. Sakai K, Hoshi Y, Nomura Y et al (2003) Suppression of carcinogenic process in mice by chronic low dose rate gamma-irradiation. Int J low Radiat 1:142–6

    Article  Google Scholar 

  73. Sakamoto K, Myojin M, Hosoi Y et al (1997) Fundamental and clinical studies on cancer control with total or upper-half body irradiation. J Jpn Soc Ther Radiol Oncol 9:161–75

    Google Scholar 

  74. Sakamoto K (2004) Radiobiological basis for cancer therapy by total or upper-half body irradiation. Nonlin Biol Toxicol Med 2:293–316

    Article  Google Scholar 

  75. Sakai K, Nomura T, Ina Y (2006) Enhancement of bio-protective functions by low dose/doserate radiation. Dose Response 4:327–32

    Article  CAS  PubMed  Google Scholar 

  76. Johnson A (2008) Publish and be wrong. The Economist 9th Oct 2008

    Google Scholar 

  77. Sanders CL, Sohn S (2006) Evidence for radiation hormesis from epidemiological studies of cancer. World J Nucl Med 5(Suppl 1): S258–60

    Google Scholar 

  78. Ioannidis JP (2005) Why most published research findings are false. PLOS Med 2(8): e124. http://medicine.plosjournals.org/perlserv?request = get-document&doi = 10.1371/journal.pm

    Article  PubMed  Google Scholar 

  79. Luckey TD (2007) Radiation prevents much cancer. Int J Low Radiat 4:336–44

    Article  Google Scholar 

  80. Cohen BL (1995) Test of the linear no-threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Phys 68:157–74

    Article  CAS  PubMed  Google Scholar 

  81. Atkinson WD, Law DV, Bromley KJ et al (2004) Mortality of employees of the United Kingdom Atomic Energy Authority, 1946–97. Occup Environ Med 61:577–85

    Article  CAS  PubMed  Google Scholar 

  82. Ivanov V, Iiyin L, Gorski A et al (2004) Radiation and epidemiological analysis for solid cancer incidence among nuclear workers who participated in recovery operations following the accident at the Chernobyl NPP. J Radiat Res (Tokyo) 45:41–4

    Article  Google Scholar 

  83. Hall P, Mattsson A, Boice JD (1996) Thyroid cancer after diagnostic administration of iodine-131. Radiat Res 145:86–92

    Article  CAS  PubMed  Google Scholar 

  84. Holm LE, Wiklud K, Lundell G et al (1988) Thyroid cancer after diagnostic doses of iodine-131: a retrospective cohort study. J Natl Cancer Inst 80:1133–8

    Google Scholar 

  85. Holm LE, Hall P, Wiklud K et al (1991) Cancer risk after iodine-131 therapy for hyperthyroid-ism. J Natl Cancer Inst 83:1072–7

    Article  CAS  PubMed  Google Scholar 

  86. Thompson RE, Nelson DF, Popkin JH, Popkin Z (2008) Case–control study of lung cancer risk from residential radon exposure in Worcester County, Massachusetts. Health Phys 94:228–41

    Article  CAS  PubMed  Google Scholar 

  87. Luckey TD (2008) Abundant health from radioactive waste. Int J Low Radiat 5:71–82

    Article  Google Scholar 

  88. UNSCEAR (2000) 2000 report to the general assembly, with annexes. Annex J, vol II. United Nations, New York, pp 451–566

    Google Scholar 

  89. Schull WJ, Otakee M, Neel JV (1981) Genetic effects of the atomic bomb: a reappraisal. Science 213:1220–5

    Article  CAS  PubMed  Google Scholar 

  90. Neel JV, Schull WJ, Awa AA et al (1990) The children of parents exposed to atomic bombs. Estimates of the genetic doubling dose of radiation for humans. Am J Hum Genet 46:1053–79

    CAS  PubMed  Google Scholar 

  91. Mine M, Okumura Y, Ichimaru M et al (1990) Apparently beneficial effect of low to intermediate doses of A-bomb radiation on human lifespan. Int J Radiat Biol 58:1035–43

    Article  CAS  PubMed  Google Scholar 

  92. Stewart AM (1990) Healthy worker and healthy survivor effects in relation to the cancer risks of radiation workers. Am J Ind Med 17:151–4

    Article  CAS  PubMed  Google Scholar 

  93. Li C-Y, Sung F-C (1999) A review of the healthy worker effect in occupational epidemiology. Occup Med 49:225–9

    Article  CAS  Google Scholar 

  94. Monson RR (1986) Observations on the healthy worker effect. J Occup Med 28:425–33

    Article  CAS  PubMed  Google Scholar 

  95. Matanoski GM (1991) Health effects of low-level radiation in shipyard workers. Final Report. Report No. DOE DE-AC02–79EV10095. U.S. Department of Energy, Washington, DC

    Google Scholar 

  96. Sponsler R, Cameron JR (2005) Nuclear shipyard worker study (1980–1988): a large cohort exposed to low-dose-rate gamma radiation. Int J Low Radiat 1:463–78

    Article  Google Scholar 

  97. Thierry-Chef I et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: study of errors in dosimetry. Radiat Res 167:380–95

    Article  CAS  PubMed  Google Scholar 

  98. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    Article  CAS  PubMed  Google Scholar 

  99. Luan YC, Shieh MC, Chen HT et al (2006) Re-examining the health effects of radiation and its protection. Int J Low Radiat 3:27–44

    Google Scholar 

  100. Upton AC (2001) Radiation hormesis: data and interpretations. Crit Rev Toxicol 31:681–95

    Article  CAS  PubMed  Google Scholar 

  101. Choi NC, Timothy AR, Kaufman SD et al (1979) Low dose fractionated whole body irradiation in the treatment of advanced non-Hodgkin's lymphoma. Cancer 43:1636–42

    Article  CAS  PubMed  Google Scholar 

  102. Taylor LS (1980) Some non-scientific influences of radiation protection standards and practice. In: Fifth International Congress of the International Radiation Protection Association, vol 1. The Israel Health Physics Society, Jerusalem, pp 307–19

    Google Scholar 

  103. Tubiana M, A Aurengo, D Averbeck et al (2006). The debate on the use of linear no threshold for assessing the effects of low doses. J Radiol Prot 26:317–24

    Article  CAS  PubMed  Google Scholar 

  104. Cuttler JM (2007) Health effects of low level radiation: when will we acknowledge the reality? Dose Response 5L 292–8

    Article  CAS  Google Scholar 

  105. Maynard K (2008) Special issue on hormesis. Am J Pharm Toxicol 3:1–3

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Conclusions, Summary, and Importance. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics