Skip to main content
  • 713 Accesses

Liver cancer is one of the most frequent cancers in the world with a large geographical variation in frequency. Liver cancer is one of the most prevalent cancers in South Korea and Japan. It is the third most prevalent cancer among Korean men (15%) and seventh most prevalent cancer in Korean women (6%). Prevalence of liver cancer in the United States is much less for both genders.

Confusion may result in differentiating primary liver cancer from metastatic liver cancer. Risk factors for primary liver cancer include hepatitis B and C infections, alcoholism, aflatoxin B1, other mycotoxins, tamoxifen, liver fluke, pyrrolizidine alkaloids from certain plants, vinyl chloride, tobacco-specific nitrosamines, heterocyclic aromatic amines, Thorotrast, hemochromatosis, and inherited genetic disease (alpha-1-antitrypsin deficiency, tyrosinemia, Wilson's disease, and glycogen storage disease) [2, 3]. The majority of primary liver cancers in Japan are associated chronic viral hepatitis infections [4]. Spontaneous rates of primary liver cancer are as much as three times higher in males than in females. The majority of primary liver cancers are hepatocellular carcinomas, followed by cholangiocarcinomas.

The very existence of radiation hormesis phenomenon proves the existence of radiation thresholds and falsifies LNT. This is why radiation hormesis is the best remedy for mass psychological affliction called radiophobia, and, by the same token, this is why it is ignored by the influential part of the radiation protection establishment, against a vast factual evidence and the benefit of society [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jasworowski Z (2009) Radiation hormesis—a remedy for fear. BELLE Newsletter 15:14–20

    Google Scholar 

  2. Colombo M (1992) Hepatocellular carcinoma. J Hepatol 15:225–236

    Article  CAS  PubMed  Google Scholar 

  3. Sanders CL (1996) Prevention and therapy of cancer and other common diseases: alternative and traditional approaches. CD-ROM, Ð3000 pages in HTML and MS Word. Infomedix, Richland, WA

    Google Scholar 

  4. Fujiwara S, Kusumi S, Cologne J et al (2000) Prevalence of anti-hepatitis C virus antibody and chronic liver disease among atomic bomb survivors. Radiat Res 154:12–19

    Article  CAS  PubMed  Google Scholar 

  5. Cologne JB, Tokuoka S, Beebe GW et al (1999) Effects of radiation on incidence of primary liver cancer among atomic bomb survivors. Radiat Res 152:364–373

    Article  CAS  PubMed  Google Scholar 

  6. van Kaick G, Lorenz D, Muth H, Kaul A (1978) Malignancies in German Thorotrast patients and estimated tissue dose. Health Phys 35:127–136

    Article  PubMed  Google Scholar 

  7. da Silva Horta J, da Silva Horta ME, da Motta L et al (1978) Malignancies in Portuguese Thorotrast patients. Health Phys 35:137–151

    Article  PubMed  Google Scholar 

  8. Van Kaick G, Wesch H, Luhrs H et al (1991) Neoplastic diseases induced by chronic alpha irradiation. Epidemiological, biophysical and clinical results by the German Thoratrast study. J Radiat Res 32:20–33

    Article  PubMed  Google Scholar 

  9. Tokarskaya ZB, Zhuntova G V, Scott BR et al (2006) Influence of alpha and gamma radiations and non-radiation risk factors on the incidence of malignant liver tumors among Mayak workers. Health Phys 91:296–310

    Article  CAS  PubMed  Google Scholar 

  10. Hankey BF (1992) Brain and other nervous system. In: Niller BA, Gloeckler LA, Kosary CL, Edwards BK (eds) NIH Publ. 92–2789, Bethesda, MD

    Google Scholar 

  11. Perry JR, Ang LC, Bilbao JM, Muller PJ (1995) Clinicopathologic features of primary and postirradiation cerebral gliosarcoma. Cancer 75:2910–2918

    Article  CAS  PubMed  Google Scholar 

  12. Ron E, Modan B, Boice J et al (1988) Tumors of the brain and nervous system following radiotherapy in childhood. N Engl J Med 319:1033–1039

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu Y, Kato H, Schull W (1990) Studies of the mortality of A-bomb survivors. 9. Mortality, 1950–1985: Part 2. Cancer mortality based on the recently revised doses (DS86). Radiat Res 121:120–141

    Article  CAS  PubMed  Google Scholar 

  14. Van Kaick G, Muth M, Kaul A et al (1986) Report on the German Thorotrast Study. Strahlentherapie 80(Suppl):114–118

    Google Scholar 

  15. Wilkinson GS, Tietjen GL, Wiggs LD et al (1987) Mortality among plutonium and other radiation workers at a plutonium weapons facility. Am J Epidemiol 125:231–250

    CAS  PubMed  Google Scholar 

  16. Hadjimichael OC, Ostfeld AM, D'Atri DA (1983) Mortality and cancer incidence experience of employees in a nuclear fuels fabrication plant. J Occup Med 25:48–61

    Article  CAS  PubMed  Google Scholar 

  17. Sanders CL, Dagle GE, Mahaffey JA (1992) Incidence of brain tumors in rats exposed to an aerosol of 239Pu02. Int J Radiat Biol 62:97–102

    Article  CAS  PubMed  Google Scholar 

  18. Lonser R, Walbridge S, Vortmeyer A et al (2002) Induction of glioblastoma multiforme in nonhuman primates after therapeutic doses of fractionated whole-brain radiation therapy. J Neurosurg 97:1378–1389

    Article  PubMed  Google Scholar 

  19. Ron E, Lubin JH, Shore RE et al (1995) Thyroid cancer after exposure to external irradiation: a pooled analysis of seven studies. Radiat Res 141:259–277

    Article  CAS  PubMed  Google Scholar 

  20. Thompson DE, Mabuchi K, Ron E et al (1994) Cancer incidence in atomic bomb survivors. Part II. Solid tumors 1958–1987. Radiat Res 137:S17–S67

    Article  CAS  PubMed  Google Scholar 

  21. Tubiana M (2000) Radiation risks in perspective: radiation-induced cancer among cancer risks. Radiat Environ Biophys 39:3–16

    Article  CAS  PubMed  Google Scholar 

  22. National Council on Radiation Protection (1985) Induction of thyroid cancer by ionizing radiation. NCRP Report No. 80, Chapter 4. Human experience after exposure to Iodine-131

    Google Scholar 

  23. Brown RA (1997) Bomb fallout and thyroid cancer: statistical sheep in real wolves' clothing. http://www.srv.net/Drussb/thyroid/index.html

  24. National Cancer Institute (1997) NCI releases results of nationwide study of radioactive fallout from nuclear tests, Bethseda, MD, August 1, 1997. http://rex.nci.nih.gov/INTRFCE_GIFS/ MASSMED_INTR_DOC.htm

  25. Cardis E, Kesminienne A, Ivanov V et al (2005) Risk of thyroid cancer after exposure to I–131 in childhood. J Natl Cancer Inst 97:724–732

    Article  PubMed  Google Scholar 

  26. Scott BR (2006) Re: Risk of thyroid cancer after exposure to (131)I in childhood. J Natl Cancer Inst 98:561

    PubMed  Google Scholar 

  27. Hancock SL, McDougall IR, Constine LS (1995) Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys 31:1165–1170

    CAS  PubMed  Google Scholar 

  28. Modan B, Bidatz D, Mart H (1974) Radiation-induced head and neck tumors. Lancet 1:277–279

    Article  CAS  PubMed  Google Scholar 

  29. Ron E, Modan B (1980) Benign and malignant thyroid neoplasms after childhood irradiation for tinea capitis. J Natl Cancer Inst 65:7–11

    CAS  PubMed  Google Scholar 

  30. Moosa M, Mazzaferri EL (1997) Occult thyroid carcinoma. Cancer J 10:180–188

    Google Scholar 

  31. Furmanchuk AW, Roussak N, Ruchti C (1993) Occult thyroid carcinomas in the region of Minsk, Belarus. An autopsy study of 215 patients. Histopathology 23:319–325

    Article  CAS  PubMed  Google Scholar 

  32. Harach HR, Franssila KO, Wasenius VM (1985) Occult papillary carcinoma of the thyroid- A “normal” finding in Finland. A systematic study. Cancer 56:531–538

    Article  CAS  PubMed  Google Scholar 

  33. Fornalski KW, Dobrzynski L (2010) The healthy worker effect and nuclear industry workers. Dose-Response (in press)

    Google Scholar 

  34. Ron E, Lubin J, Schneider AB (1992) Thyroid cancer incidence. Nature 360:113

    Article  CAS  PubMed  Google Scholar 

  35. Bennett B, Repacholi M, Carr Z (eds) (2006) Health effects of the Chernobyl accident and special health care programmes. World Health Organization, Geneva, p 5

    Google Scholar 

  36. Hatch M, Ron E, Bouville A et al The Chernobyl disaster: cancer following the accident at the Chernobyl nuclear power plant. Epidemiol Reviews 2005: 27:56–66

    Article  CAS  Google Scholar 

  37. Chernobyl Forum (IAEA, WHO, UNDP, UNEP, UN-OCHA, UNSCEAR, World Bank) (2005) Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts. The work is in three volumes and 600 pages by more than 100 scientists

    Google Scholar 

  38. Hall P, Mattsson A, Boice JD (1996) Thyroid cancer after diagnostic administration of iodine-131. Radiat res 145:86–92

    Article  CAS  PubMed  Google Scholar 

  39. Holm LE, Hall P, Wiklud K et al (1991) Cancer risk after iodine-131 therapy for hyperthyroid-ism. J Natl Cancer Inst 83:1072–1077

    Article  CAS  PubMed  Google Scholar 

  40. Holm LE, Wiklud K, Lundell G et al (1988) Thyroid cancer after diagnostic doses of iodine-131: A retrospective cohort study. J Natl Cancer Inst 80:1133–1138

    Google Scholar 

  41. Yalow RS (1995) Radiation and public perception. In: Young JP, Yalow RS (eds) Radiation and public perception, benefits and risks, American Chemical Society, Washingston, DC, pp 13–22

    Google Scholar 

  42. de Vathaire F, Schumberger M, Delisle MJ et al (1997) Leukaemias and cancers following I-131 administration for thyroid cancer. Br J Cancer 75:734–739

    PubMed  Google Scholar 

  43. Franklyn JA, Maisonneuve P, Sheppard M et al (1999) Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: a population-based cohort study. Lancet 353:2111–2115

    Article  CAS  PubMed  Google Scholar 

  44. USDHHS (U.S. Department of Health and Human Services, Center for Disease Control and Prevention, National Center for Environmental Health) (2002) The Hanford Thyroid Disease Study. http://www.cdc.gov/nceh/radiation/hanford/htdsweb/index.htm

Download references

Editor information

Editors and Affiliations

Appendix

Appendix

Table A12.3 Risk of liver cancer in epidemiological studies of populations exposed to ionizing radiation
Table A12.4 Risk of CNS cancer in epidemiological studies of populations exposed to ionizing radiation
Table A12.5 Risk of thyroid cancer in epidemiological studies of populations exposed to ionizing radiation

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Liver, CNS, and Thyroid Cancers. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics