Skip to main content

Introduction

  • Chapter
  • 780 Accesses

Cancer arises from a variety of cell types with a prognosis that depends on tumor location and stage at time of diagnosis. The lifetime risk of fatal cancer in the U.S. is ~22% (23.6% for males and 19.9% for females) with lung, prostate, breast, and colorectal cancer being the most prominent [2]. In Korea, cancers of the stomach, breast, liver, and lung are the most prominent (Figs. 1.1 and 1.2). The average annual radiation dose to Americans and Koreans from natural sources (radon, internal radionuclides within the body, galactic– cosmic radiation, and primordial terrestrial sources, mostly from uranium and thorium) is about 2.5 mSv. The average annual dose from anthropogenic sources (mostly from medical sources) for both Americans and Koreans is about 0.5 mSv. The role of ionizing radiation in cancer formation at doses less than 1 Sievert (1 Sv = 1,000 mSv or 100 cSv) of low dose-rate, low LET (Linear Energy Transfer) radiation is the subject of this book.

The use of the LNT is “faith-based radiation protection” [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dr Bobby Scott, personal communication

    Google Scholar 

  2. Jemal A, Murray T, Samuels A et al (2003) Cancer Statistics, 2003. CA Cancer J Clin 53:5–26

    Article  PubMed  Google Scholar 

  3. General Accounting Office (2000) Radiation Standards. Scientific Basis Inconclusive, and EPA and NRC Disagreement Continues, Report to the Honorable Pete Domenici, US Senate, GAO/RCED-00–152, General Accounting Office

    Google Scholar 

  4. UNSCEAR (2000) Sources and effects of ionizing radiation, vol II. Effects. Annex II, United Nations, New York

    Google Scholar 

  5. Strzelczyk J, Potter W, Zdrojewicz Z (2007) Rad-by-rad (bit-by-bit): triumph of evidence over activities fostering fear of radiogenic cancers at low doses. Dose-Response 5:275–283

    Article  CAS  PubMed  Google Scholar 

  6. Mossman KL et al (2000) Final report, Bridging Radiation Policy and Science, An International Conference, Airlie House Conference Center, Warrenton, VA, pp 1–5

    Google Scholar 

  7. Health Physics Society (2001) Compatibility in radiation-safety regulations. Position paper of the Health Physics Society

    Google Scholar 

  8. Calabrese EJ, Baldwin LA (2000) Radiation hormesis: its historical foundations as a biological hypothesis. Hum Exper Toxicol 19:41–75

    Article  CAS  Google Scholar 

  9. Aurengo A, Averbeck D, Bonnin A et al (2005) Dose-effect relationships and estimation of the carcinogenic effects of low doses of ionizing radiation. Executive Summary. French Academy of Sciences, French National Academy of Medicine

    Google Scholar 

  10. Tubiana M (2003) The carcinogenic effect of low doses: the validity of the linear no-threshold relationship. Intern J Low Radiation 1:1–33

    Article  Google Scholar 

  11. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation (2005) BEIR VII – Phase 2, Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council (National Academy of Sciences)

    Google Scholar 

  12. ICRP Draft Report of Committee I/Task Group (2004) Low dose extrapolation of radiation related cancer risk, Dec

    Google Scholar 

  13. EPA (Environmental Protection Agency) (1994) Estimating radiogenic cancer risks. EPA Report 402-R-93–076, Washington, DC

    Google Scholar 

  14. NCRP (National Council on Radiation Protection and Measurements) 2001 Evaluation of the linear-non-threshold dose-response model for ionizing radiation. NCRP Report No. 136, Bethesda, MD

    Google Scholar 

  15. Tubiana M, Feinendegen LE, Yang C, Kaminski JM (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22

    Article  PubMed  Google Scholar 

  16. Little MP, Wakeford R, Tawn EJ et al (2009) Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 251:6–12

    Article  PubMed  Google Scholar 

  17. Scott BR (2008) It's time for a new low-dose-radiation risk assessment paradigm—one that acknowledges hormesis. Dose-Response 6:333–351

    Article  PubMed  Google Scholar 

  18. Lewis E (1957) Leukemia and ionizing radiation. Science 43:965

    Article  Google Scholar 

  19. International Commission on Radiological Protection (1991) Recommendations of the International Commission on Radiological Protection. Elsevier Science, New York. ICRP Publication No 60, Ann ICRP 21:1–3

    Google Scholar 

  20. Gilbert ES (2009) Ionising radiation and cancer risks: What have we learned from epidemiology? Int J Radiat Biol 85:467–482

    Article  CAS  PubMed  Google Scholar 

  21. Tubiana M, Aurengo A, Averbeck D, Masse R (2006) The debate on the use of linear or threshold for assessing the effect of low doses. J Radiol Prot 26:317–324

    Article  CAS  PubMed  Google Scholar 

  22. Duport P (2003) A database of cancer induction by low dose radiation in mammals: overview and initial observations. Int J Low Radiat 1:120–131

    Article  Google Scholar 

  23. Sanders CL, Scott BR (2008) Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose-Response 6:53–79

    Article  CAS  Google Scholar 

  24. Tanooka H (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non-tumour doses. Int J Radiat Biol 77:541–551

    Article  CAS  PubMed  Google Scholar 

  25. Duport P (2002) Is the radon risk overestimated? Neglected doses in the estimation of the risk of lung cancer in uranium underground miners. Radiat Prot Dosim 98:329–338

    CAS  Google Scholar 

  26. Glasstone S (1957) The effects of nuclear weapons. United States Department of Defense and United States Atomic Energy Commission, Washington, DC

    Google Scholar 

  27. Jaworowski Z (2009) Radiation hormesis—a remedy for fear. BELLE Newsletter 15:14–20

    Google Scholar 

  28. Brenner DJ, Doll R, Goodhead DT et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci U S A 100: 13761–13766

    Article  CAS  PubMed  Google Scholar 

  29. Taylor LS (1980) Some non-scientific influences on radiation protection standards and practice. Health Phys 32:851–874

    Google Scholar 

  30. Bond VP, Wielopolski L, Shani G (1996) Current misinterpretation of the linear no threshold hypothesis. Health Phys 70:877–882

    Article  CAS  PubMed  Google Scholar 

  31. Latarjet R, Tubiana M (1989) The risks of induced carcinogenesis after irradiation at small doses. The uncertainties which remain after the 1988 UNSCEAR report. Int J Radiat Oncol 17:237–240

    CAS  Google Scholar 

  32. Rossi HH, Zaider M (1997) Radiogenic lung cancer. The effect of low doses of low LET radiation. Radiat Environ Biophys 36:85–88

    Article  CAS  PubMed  Google Scholar 

  33. Gros F (1999) Carcinogenic risks due to ionizing radiation. Life Sciences. CR Acad Sci [III] 322:81–256

    Google Scholar 

  34. Abelson PH (1994) Risk assessment of low level exposure. Science 265:1507

    Article  CAS  PubMed  Google Scholar 

  35. Michor F, Iwasa Y, Nowak M (2004) Dynamics of cancer progression. Nature Review Cancer 4:197–205

    Article  CAS  Google Scholar 

  36. Carnes BA, Groer PG, Kotec TJ (1997) Radium dial workers: issues concerning dose response and modeling. Radiat Res 147:707–714

    Article  CAS  PubMed  Google Scholar 

  37. Nyberg U, Nilsson B, Travis LB et al (2002) Cancer incidence among Swedish patients exposed to radioactive thorotrast: a forty-year follow-up survey. Radiat Res 157:419–425

    Article  CAS  PubMed  Google Scholar 

  38. Van Kaick G, Dalheimer A, Hornik A et al (1999) The German thorotrast study: recent results and assessment of risks. Radiat Res 152:564–572

    Google Scholar 

  39. Miller RC, Randers-Pehrson G, Geand CR et al (1999) The oncogenic transforming potential of the passage of single alpha particles through mammalian cell nuclei. Proc Natl Acad Sci U S A 96:19–22

    Article  CAS  PubMed  Google Scholar 

  40. Sonnenschein C, Soto A (2000) Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Molecular Carcinogenesis 29:205–211

    Article  CAS  PubMed  Google Scholar 

  41. Soto A, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm. Bioessays 26:1097–1107

    Article  CAS  PubMed  Google Scholar 

  42. Baker SG, Kramer BS (2007) Paradoxes in carcinogenesis: new opportunities for research directions. BMC Cancer 7:151–156

    Article  PubMed  Google Scholar 

  43. Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and trans-generational effects. Radiat Res 159:581–596

    Article  CAS  PubMed  Google Scholar 

  44. Higson DJ (2004) The bell should toll for the linear no-threshold model. J Radiol Prot 24:315–319

    Article  CAS  PubMed  Google Scholar 

  45. Feinendegen LE, Neumann RD (2005) Physics must join with biology in better assessing risk from low-dose irradiation. Radiat Prot Dosimetry 117:346–356

    Article  CAS  PubMed  Google Scholar 

  46. Feinendegen LE, Pollycove M, Neumann RD (2007) Whole-body responses to low-level radiation exposure: new concepts in mammalian radiobiology. Exp Hematol 35(Suppl 1):37–46

    Article  CAS  PubMed  Google Scholar 

  47. Council of Scientific Society Presidents (1998) Creating a strategy for science-based national policy: addressing conflicting views on the health risks of low-level ionizing radiation, Wingspread Conference, Racine, WI, July 31-August 3, 1997

    Google Scholar 

  48. Henschler D (2006) The origin of hormesis: historical background and driving forces. Hum Exp Toxicol 25:347–351

    Article  CAS  PubMed  Google Scholar 

  49. Calabrese EJ (2002) Hormesis: changing view of the dose response: a personal account of the history and current status. Mutat Res 511:181–189

    Article  CAS  PubMed  Google Scholar 

  50. Calabrese EJ, Baldwin LA (2001) Hormesis: a generalizable and unifying hypothesis. Crit Rev Toxicol 31:353–424

    Article  CAS  PubMed  Google Scholar 

  51. Calabrese EJ, Baldwin LA (2001) The frequency of U-shaped dose responses in the toxico-logical literature. Toxicol Sci 62:330–333

    Article  CAS  PubMed  Google Scholar 

  52. Luckey TD (1991) Radiation hormesis. CRC Press, Boca Raton, FL

    Google Scholar 

  53. Luckey TD (1982) Physiological benefits from low-level ionizing radiation. Health Phys 43:771–789

    Article  CAS  PubMed  Google Scholar 

  54. Luckey TD (1999) Nurture with ionizing radiation: a provocative hypothesis. Nutrition and Cancer 34:1–11

    Article  CAS  PubMed  Google Scholar 

  55. Kant K, Chauhan RP, Sharma GS et al (2003) Hormesis in humans exposed to low-level ionizing radiation. Intern J Low Radiat 1:76–87

    Article  Google Scholar 

  56. Jaworowski Z (1995) Stimulating effects of ionizing radiation: new issues for regulatory policy. Regulatory Toxicology and Pharmacology 22:172–179

    Article  CAS  PubMed  Google Scholar 

  57. Calabrese EJ, Baldwin LA (2001) Scientific foundations of hormesis. Crit Rev Toxicol 31:351–624

    Article  Google Scholar 

  58. Pollycove M, Feinendegen LE (2001) Biologic responses to low doses of ionizing radiation: detriment versus hormesis. Part 2: Dose responses to organisms. J Nucl Med 42:26N–37N

    CAS  PubMed  Google Scholar 

  59. Pollycove M, Feinendegen LE (1999) Molecular biology, epidemiology and the demise of the linear no-threshold (LNT) hypothesis. In: CR Acad. Sci., Paris, Life Sciences 322:197–204

    Google Scholar 

  60. Pollycove M (1998) Nonlinearity of radiation health effects. Environ Health Perspect 106:363–368

    Article  PubMed  Google Scholar 

  61. Leonard BE (2007) Adaptive response and human benefit: Part I. A microdosimetry dose-dependent model. Int J Radiat Biol 83:115–131

    Article  CAS  PubMed  Google Scholar 

  62. Stephens LC, Kang K, Schultheiss TE et al (1991) Apoptosis in irradiated murine tumors. Radiat Res 127:308–316

    Article  CAS  PubMed  Google Scholar 

  63. Thompson HJ, Strange R, Schedin PJ (1992) Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol Biomarkers Prev 1:597–602

    CAS  PubMed  Google Scholar 

  64. Leonard BE (2005) Adaptive response by single cell radiation hits-implications for nuclear workers. Radiat Prot Dosimetry 116:387–391

    Article  CAS  PubMed  Google Scholar 

  65. Leonard BE (2007) Adaptive response: Part II. Modeling for dose rate and time influences. Int J Radiat Biol 83:395–408

    Article  CAS  PubMed  Google Scholar 

  66. Scott BR, SA Belinsky, S Leng et al (2009) Radiation-stimulated epigenetic reprogramming of adaptive-response genes in the lung: an evolutionary gift for mounting adaptive protection against lung cancer. Dose Response 7:104–131

    Article  CAS  PubMed  Google Scholar 

  67. Hiserodt E (2005) Under-exposed. What if radiation is actually good for you? Laissez Faire Books, Little Rock, AR, p 247

    Google Scholar 

  68. Calabrese EJ, Baldwin LA (2003) Hormesis: the dose-response revolution. Ann Rev Pharmacol Toxicol 43:175–197

    Article  CAS  Google Scholar 

  69. Calabrese EJ (2005) Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environmental Pollution 138:378–411

    Article  CAS  Google Scholar 

  70. Calabrese EJ, Staudenmayer JW, Stanek EJ et al (2006) Hormesis outperforms threshold model in National Cancer Institute antitumor drug screening database. Toxicol Sci 94: 368–378

    Article  CAS  PubMed  Google Scholar 

  71. Calabrese EJ, Baldwin LA (2003) Hormesis at the National Toxicology Program (NTP): evidence of hormetic dose responses in NTP dose-range studies. Nonlinearity in Biology, Toxicology, and Medicine 1:455–467

    Article  CAS  Google Scholar 

  72. Kondo S (1993) Health effects of low-level radiation. Kinki University Press, Osaka, Japan and Medical Physics Publishing, Madison, WI

    Google Scholar 

  73. Berrington A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimations for the UK and 14 other countries. Lancet 363:345–351

    Article  Google Scholar 

  74. Breckow J (2006) Linear-no-threshold is a radiation-protection standard rather than a mechanistic effect model. Radiat Environ Biophys 44:257–260

    Article  PubMed  Google Scholar 

  75. Cardis E, Vrijheid M, Blettner M et al (2005) Risk of cancer after low doses of ionizing radiation: retrospective cohort study in 15 countries. BMJ 331:77–83

    Article  CAS  PubMed  Google Scholar 

  76. Darby S, Hill D, Auvinen A et al (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330:223–228

    Article  CAS  PubMed  Google Scholar 

  77. Feinendegen LE, Bond VP, Booz J et al (1988) Biochemical and cellular mechanisms of low-dose effects. Int J Radiat Biol 53:23–37

    Article  CAS  Google Scholar 

  78. Shadley JD, Wiencke JK (1989) Induction of the adaptive response by X-rays is dependent on radiation intensity. Int J Radiat Biol 56:107–118

    Article  CAS  PubMed  Google Scholar 

  79. Calabrese EJ (2005) Historical blunders: how toxicology got the dose-response relationship half right. Cellular and Molecular Biology 51:643–654

    CAS  PubMed  Google Scholar 

  80. Calabrese EJ, Baldwin LA (2003) The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol Sci 71:246–250

    Article  CAS  PubMed  Google Scholar 

  81. Eaton DL, Klassen CD (2001) Principles of toxicology. In: Klassen CD (ed) Casarett & Doull's toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New York, pp 11–34

    Google Scholar 

  82. Hoffman GR and WE Stempsey. 2008. The hormesis concept and risk assessment: Are there unique ethical and policy considerations. BELLE 14(3):11–17

    Google Scholar 

  83. Scott BR (2005) Stochastic thresholds: a novel explanation of nonlinear dose-response relationships. Dose-Response 3:547–567

    Article  CAS  Google Scholar 

  84. Scott BR (2007) Low-dose radiation-induced protective process and implications for risk assessment, cancer prevention, and cancer therapy. Dose-Response 5:131–141

    Article  CAS  PubMed  Google Scholar 

  85. ICRP (International Commission on Radiological Protection) (1994) Protection against radon-222 at home and at work. ICRP Publication 65. Ann ICRP 23, Pergamon, Oxford

    Google Scholar 

  86. Birchall A, James AC (1994) Uncertainty in analysis of the effective dose perunit exposure from 222Rn D.P. and implications for ICRP risk-weighting factors. Radiat Prot Dosim 53:133–140

    CAS  Google Scholar 

  87. Marsh JW, Birchall A, Butterweck G et al (2002) Uncertainty analysis of the weighted equivalent lung dose per unit exposure to radon progeny in the home. Radiat Prot Dosim 102:229–248

    CAS  Google Scholar 

  88. UNSCEAR (1993) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), United Nations, New York

    Google Scholar 

  89. Steck DJ (1990) Indoor radon and lung cancer in Minnesota. In: Proceedings of the Technical Exchange Meeting on Assessing Indoor Radon Health Risks, September, 1989, Grand Junction, CO. U.S. Department of energy CONF-8909190

    Google Scholar 

  90. Sanders CL, Thompson RC, Bair WJ (1970) Lung cancer: dose response studies with radionu-clides. In: Inhalation Carcinogenesis, CONF-691001, NTIS, Springfield, VA, pp 285–303

    Google Scholar 

  91. Rattan SIS, Fernandes RA, Demirovic D et al (2009) Heat stress and hormetin-induced horme-sis in human cells: effects on aging, wound healing, angiogenesis, and differentiation. Dose-Response 7:90–103

    Article  CAS  PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Introduction. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics