Skip to main content

RKDG with WENO Type Limiters

  • Conference paper
  • 1492 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 113))

Abstract

The discontinuous Galerkin (DG) method is a spatial discretization procedure for convection dominated equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters, which is termed as RKDG when TVD Runge-Kutta method is applied for time discretization. It has the advantage of flexibility in handling complicated geometry, h − p adaptivity, and efficiency of parallel implementation and has been used successfully in many applications. However, the limiters used to control spurious oscillations in the presence of strong shocks are less robust than the strategies of essentially non-oscillatory (ENO) and weighted ENO (WENO) finite volume and finite difference methods. In this chapter, we will describe the procedure of using WENO and Hermite WENO finite volume methodology as limiters for RKDG methods on unstructure meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously obtain uniform high order accuracy and sharp, non-oscillatory shock transition for RKDG methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biswas, B., Devine, K.D., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Applied Numer. Math. 14, 255–283 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 169, 111–150 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Part I. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50. Springer, Heidelberg (2000) (Overview)

    Google Scholar 

  6. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys. 150, 97–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Luo, H., Baum, J.D., Lohner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case. J. Comput. Phys. 193, 115–135 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Scient. Comput. 26, 907–929 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case. Computers Fluids 34, 642–663 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Qiu, J., Shu, C.-W.: A comparison of trouble cell indicators for Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Scient. Comput. 27, 995–1013 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  20. Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)

    MATH  Google Scholar 

  21. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhu, J., Qiu, J., Shu, C.-W., Dumbser, M.: Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhu, J., Qiu, J.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: Unstructured meshes. J. Scient. Comput. 39, 293–321 (2009)

    Article  MathSciNet  Google Scholar 

  25. Zhu, J., Qiu, J.: Local DG method using WENO type limiters for convection-diffusion problems (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiu, J., Zhu, J. (2010). RKDG with WENO Type Limiters. In: Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H., Sørensen, K. (eds) ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03707-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03707-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03706-1

  • Online ISBN: 978-3-642-03707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics