Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 113))

  • 1468 Accesses

Abstract

The discontinuous Galerkin (DG) method can be viewed as a generalization to higher orders of the finite volume method. At lowest order, the standard DG method reduces to the cell-centered finite volume method.We introduce for the Euler equations an alternative DG formulation that reduces to the vertex-centered version of the finite volume method at lowest order. The method has been successfully implemented for the Euler equations in two space dimensions, allowing a local polynomial order up to p=3 and supporting curved elements at the airfoil boundary. The implementation has been done as an extension within the existing edge-based vertex-centered finite-volume code Edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114(1), 45–58 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abgrall, R.: Toward the ultimate conservative scheme: following the quest. J. Comput. Phys. 167(2), 277–315 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace Sciences Meeting, AIAA 89-0366, Reno, Nevada (1989)

    Google Scholar 

  4. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2d Euler equations. J. Comp. Phys. 138, 251–285 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berggren, M.: A vertex-centered, dual discontinuous Galerkin method. J. Comput. Appl. Math. 192(1), 175–181 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berggren, M., Ekström, S.-E., Nordström, J.: A discontinuous Galerkin extension of the vertex-centered edge-based finite volume method. Commun. Comput. Phys. 5, 456–468 (2009)

    MathSciNet  Google Scholar 

  7. Blazek, J.: Computational Fluid Dynamics, 2nd edn. Elsevier, Amsterdam (2005)

    Google Scholar 

  8. Catabriga, L., Coutinho, A.: Implicit SUPG solution of Euler equations using edge-based data structures. Comput. Meth. Appl. Mech. Eng. 191(32), 3477–3490 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, Heidelberg (1999)

    Google Scholar 

  10. Csík, A., Ricchiuto, M., Deconinck, H.: A Conservative Formulation of the Multidimensional Upwind Residual Distribution Schemes for General Nonlinear Conservation Laws. J. Comput. Phys. 179(1), 286–312 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ekström, S.-E., Berggren, M.: Agglomeration multigrid for the vertex-centered dual discontinuous Galerkin method. In: Kroll, N., et al. (eds.) ADIGMA. NNFM, vol. 113, pp. 301–308. Springer, Heidelberg (2010)

    Google Scholar 

  12. Eliasson, P.: EDGE, a Navier–Stokes solver, for unstructured grids. Technical Report FOI-R-0298-SE, Swedish Defence Research Agency (2001)

    Google Scholar 

  13. Fezoui, L., Stoufflet, B.: A class of implicit upwind schemes for Euler simulations with unstructured meshes. J. Comput. Phys. 84(1), 174–206 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. FOI. Edge - Theoretical Formulation. Technical Report FOI dnr 03-2870, Swedish Defence Research Agency (2007) ISSN-1650-1942

    Google Scholar 

  15. Fun3D. Fully Unstructured Navier–Stokes, http://fun3d.larc.nasa.gov/

  16. Haselbacher, A., McGuirk, J.J., Page, G.J.: Finite volume discretization aspects for viscous flows on mixed unstructured grids. AIAA J. 37(2), 177–184 (1999)

    Article  Google Scholar 

  17. Hirsch, C.: Numerical Computation of Internal and External Flows, vol. 2. Wiley, Chichester (1990)

    MATH  Google Scholar 

  18. Krivodonova, L., Berger, M.: High-order accurate implementation of solid wall boundary conditions in curved geometries. J. Comp. Phys. 211(2), 492–512 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Luo, H., Baum, J.D., Löhner, R.: Edge-based finite element scheme for the Euler equations. AIAA J. 32, 1182–1190 (1994)

    Article  Google Scholar 

  20. Morton, K.W., Sonar, T.: Finite volume methods for hyperbolic conservation laws. Acta Numer. 16, 155–238 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Persson, P.-O., Peraire, J.: Sub-Cell shock Capturing for Discontinuous Galerkin Methods. AIAA Paper, 2006-112 (2006)

    Google Scholar 

  22. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent Applications in Research and Industry. In: Wesseling, P., Onate, E., Périaux, J. (eds.) ECCOMAS CFD 2006 (2006)

    Google Scholar 

  23. Smith, T.M., Ober, C.C., Lorber, A.A.: SIERRA/Premo–A New General Purpose Compressible Flow Simulation Code. In: AIAA 32nd Fluid Dynamics Conference, St. Louis (2002)

    Google Scholar 

  24. Solin, P., Segeth, K., Dolezel, I.: Higher Order Finite Element Methods. Taylor & Francis Ltd., Abington (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ekström, SE., Berggren, M. (2010). Incorporating a Discontinuous Galerkin Method into the Existing Vertex-Centered Edge-Based Finite Volume Solver Edge. In: Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H., Sørensen, K. (eds) ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03707-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03707-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03706-1

  • Online ISBN: 978-3-642-03707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics